首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Group B coxsackieviruses are associated with chronic inflammatory diseases of the pancreas, heart, and central nervous system. Chronic pancreatitis, which can develop from acute pancreatitis, is considered a premalignant disorder because it is a major risk factor for pancreatic cancer. To explore the genetic events underlying the progression of acute to chronic disease, a comparative analysis of global gene expression during coxsackievirus B4-induced acute and chronic pancreatitis was undertaken. A key feature of acute pancreatitis that resolved was tissue regeneration, which was accompanied by increased expression of genes involved in cell growth, inhibition of apoptosis, and embryogenesis and by increased division of acinar cells. Acute pancreatitis that progressed to chronic pancreatitis was characterized by lack of tissue repair, and the expression map highlighted genes involved in apoptosis, acinoductular metaplasia, remodeling of the extracellular matrix, and fibrosis. Furthermore, immune responses appeared skewed toward development of alternatively activated (M2) macrophages and T helper 2 (Th2) cells during disease that resolved and toward classically activated (M1) macrophages and Th1 cells during disease that progressed. Our hypothesis is that growth and differentiation signals coupled with the M2/Th2 milieu favor acinar cell proliferation, while diminished growth signals and the M1/Th1 milieu favor apoptosis of acinar cells and remodeling/proliferation of the extracellular matrix, resulting in fibrosis.  相似文献   

2.
Coxsackievirus B4 (CVB4)-induced production of alpha interferon (IFN-alpha) by peripheral blood mononuclear cells (PBMC) is enhanced in vitro by nonneutralizing anti-CVB4 antibodies from healthy subjects and, to a higher extent, from patients with insulin-dependent diabetes mellitus. In this study, we focused on identification of the viral target of these antibodies in CVB systems. High levels of IFN-alpha were obtained in supernatants of PBMC incubated with CVB4E2 or CVB3 and plasma from healthy subjects and, to a higher extent, from patients. The VP4 capsid proteins dissociated by heating at 56 degrees C from CVB4E2 (VP4(CVB4)) and CVB3 (VP4(CVB3)) but not H antigen preincubated with plasma from healthy subjects or patients inhibited the plasma-dependent enhancement of CVB4E2- and CVB3-induced IFN-alpha synthesis. There was no cross-reaction between VP4(CVB4) and VP4(CVB3) in the inhibiting effect. IFN-alpha levels in culture supernatants showed dose-dependent correlation with anti-VP4 antibodies eluted from plasma specimens using VP4-coated plates. There were higher index values for anti-VP4 antibodies detected by enzyme-linked immunosorbent assay (ELISA) and higher proportions of positive detection in 40 patients than in 40 healthy subjects (80% versus 15% for anti-VP4(CVB4)). There was no relationship between the levels of anti-CVB neutralizing antibodies and the detection of anti-VP4 antibodies by ELISA. The CVB plasma-induced IFN-alpha levels obtained in PBMC cultures in the anti-VP4 antibody-positive groups were significantly higher than those obtained in the anti-VP4 antibody-negative groups regardless of the titers of anti-CVB neutralizing antibodies. These results show that VP4 is the target of antibodies involved in the plasma-dependent enhancement of CVB4E2- and CVB3-induced IFN-alpha synthesis by PBMC.  相似文献   

3.
S A Huber  A Moraska    M Choate 《Journal of virology》1992,66(11):6541-6546
Initial studies determined whether intraperitoneal (i.p.) injection of BALB/c mice with 0.1, 1.0, and 10 mg of adriamycin (a cardiotoxic anthracycline antibiotic) for times ranging between 1 and 9 weeks prior to i.p. injection of 10(5) PFU of coxsackievirus B3 (CVB3) would alter the severity of virus-induced myocarditis. Prior adriamycin exposure enhanced pathogenicity of a poorly pathogenic CVB3 variant (H310A1) but had no effect on myocarditis produced by the pathogenic variant (H3). Cardiac virus concentrations were equivalent in H3- and H310A1-infected mice irrespective of adriamycin treatment. BALB/c mice treated with either 0.1 ml of complete Freund's adjuvant (CFA), 10 mg of adriamycin, or 10(5) PFU of H3 and H310A1 i.p. developed cytolytic Thy 1.2+ lymphocytes (CTL) to H3-infected myocytes 7 days later. CFA-, adriamycin-, and H3-treated mice developed CTL expressing the gamma delta+ T-cell receptors, while H310A1-infected animals did not. Only H3- and H310A1-infected mice developed alpha beta+ CTL. Treatment of BALB/c mice with 0.1 ml of CFA 5 days prior to H310A1 infection dramatically increased myocarditis. Selective depletion of gamma delta+ T cells abrogated this effect. The ability of gamma delta+ T cells to augment the pathogenicity of H310A1 infection was confirmed by adoptive transfer of CFA-stimulated T cells depleted of either gamma delta- or gamma delta+ cells into H310A1-infected recipients.  相似文献   

4.
Coxsackievirus B3 infections of C57BL/6 mice, which express the MHC class II IA but not IE Ag, results in virus replication in the heart but minimal myocarditis. In contrast, Bl.Tg.Ealpha mice, which are C57BL/6 mice transgenically induced to express IE Ag, develop significant myocarditis upon Coxsackievirus B3 infection. Despite this difference in inflammatory damage, cardiac virus titers are similar between C57BL/6 and Bl.Tg.Ealpha mice. Removing gammadelta T cells from either strain by genetic manipulation (gammadelta knockout(ko)) changes the disease phenotype. C57BL/6 gammadelta ko mice show increased myocarditis. In contrast, Bl.Tg.Ealpha gammadelta ko mice show decreased cardiac inflammation. Flow cytometry revealed a difference in the gammadelta cell subsets in the two strains, with Vgamma1 dominating in C57BL/6 mice, and Vgamma4 predominating Bl.Tg.Ealpha mice. This suggests that these two Vgamma-defined subsets might have different functions. To test this possibility, we used mAb injection to deplete each subset. Mice depleted of Vgamma1 cells showed enhanced myocarditis, whereas those depleted of Vgamma4 cells suppressed myocarditis. Adoptively transfusing enriched Vgamma4(+) cells to the C57BL/6 and Bl.Tg. Ealpha gammadelta ko strains confirmed that the Vgamma4 subset promoted myocarditis. Th subset analysis suggests that Vgamma1(+) cells biased the CD4(+) T cells to a dominant Th2 cell response, whereas Vgamma4(+) cells biased CD4(+) T cells toward a dominant Th1 cell response.  相似文献   

5.
It has previously been shown that T4 bacteriophage-coded dihydrofolate reductase is a capsid protein, specifically an element of the tail plate. This paper presents evidence that thymidylate synthetase is also a structural protein. Antiserum prepared against purified T4 thymidylate synthetase neutralizes T4 infectivity. Evidence is presented that structural thymidylate synthetase is the target of the antiphage component of the serum.The td gene in T4 codes for thymidylate synthetase. We have crossed the td gene from phage T6 into T4 and eliminated other T6 genetic material from the hybrid phage by extensive backcrossing. The hybrid phage, T4tdT6, is inactivated at 60 °C significantly more rapidly than the parent phage, T4D. Thus, the td gene is a determinant of a physical property of the virion, providing direct confirmation that thymidylate synthetase is a capsid protein. At present the role of the virion-bound enzyme is unknown.  相似文献   

6.
By using a model of coxsackievirus B4-induced disease, the question of whether tissue damage is due to the virus or to immune-mediated mechanisms was addressed. Both viral replication and T-cell function were implicated in contributing to the severity of disease. Three stages (I to III) of disease, which correspond to periods of high viral titers, low viral titers, and no infectious virus, have been identified. Stage I disease is considered to be primarily the result of viral replication. Immunopathological mechanisms appear to contribute to the severity of stage II and III disease. To investigate the role of T cells in contributing to the severity of disease, viral infection in CD8 knockout (ko) mice and CD4 ko mice was analyzed. CD8 T-cell responses appear to be beneficial during early, viral disease but detrimental in later disease when viral titers are diminishing. CD4 ko mice, unlike the parental strain, survived infection. Viral replication was lower in the CD4 ko mice. Was survival due to decreased viral replication or to the lack of T-helper-cell function? To investigate further the role of T helper cells in contributing to tissue damage, viral infection in two additional ko strains (interleukin-4 [IL-4] ko and gamma interferon ko strains) was examined. A clear correlation between viral replication and the outcome of infection was not observed. The absence of IL-4, which may influence T-helper-cell subset development, was advantageous during early viral disease but deleterious in later disease. The results suggest that T-cell-mediated immunity is both beneficial and detrimental during coxsackievirus B4 infection.

The group B coxsackieviruses, comprising six serotypes (B1 to B6), have been implicated in a variety of diseases such as pancreatitis, type I insulin-dependent diabetes mellitus, myocarditis, and myositis (16, 24, 25, 30). The broad spectrum of diseases associated with the group B viruses reflects the existence of strains, with various degrees of virulence, within a serotype. Although there is a great deal of information on the biochemical, biophysical, and genetic characteristics of the picornaviruses, the mechanisms by which these RNA viruses cause disease are poorly understood. An ongoing question that remains to be resolved is whether tissue damage is due solely to the virus, to immunopathological mechanisms, or to a combination of both. Evidence supporting an immunopathological mechanism during coxsackievirus B3 (CVB3) infection implicates different effector cells such as CD8 T cells (10), CD4 T cells (1, 10), autoantibody-producing B cells (19, 31), and natural killer cells (9). In addition, the type of T-helper-cell response is critical in determining pathogenicity in a myocarditis model (11).To study the intricate virus-host relationship, we have developed a mouse model of CVB4-induced disease. Using two serologically indistinguishable variants of the B4 serotype, CB4-P and CB4-V, we have shown that the development of mild versus severe disease is dependent on the infecting viral strain (3). The molecular determinants of virulence of CB4-V have been identified. A threonine residue at position 129 of VP1 is a major determinant of virulence (2). An arginine residue at position 16 of VP4 also influences virulence but to a lesser extent than Thr-129 of VP1 (26).Regardless of the host’s genetic background, the CB4-P variant induces a transient inflammation of the pancreas (pancreatitis) which is followed by repair of the damaged tissues. However, the CB4-V variant induces a severe pancreatitis that can progress to chronic disease, which results in extensive and irreversible destruction of the pancreas. CB4-V infection is also lethal in some strains of mice. The outcome of infection, in B10 strains, is determined by a locus within the major histocompatibility complex (MHC) (23). During CB4-V infection, pancreatic tissue damage is probably due to a combination of mechanisms, including viral cytolysis, autodigestion by pancreatic enzymes, and immunopathology.In this study, we examined the role of the immune system in contributing to disease during infection with the virulent variant, CB4-V. The approach involved analyzing viral infection in immunologically deficient, knockout (ko) strains of mice. We showed the following: (i) CD8 T-cell responses can be beneficial during early, viral disease but detrimental during later disease; (ii) CD4 T cells contribute to the severity of disease during viral infection; (iii) the absence of interleukin-4 (IL-4) is advantageous during early viral disease but deleterious in later disease; and (iv) the outcome of viral infection can be altered by depletion of specific cellular subsets and by neutralization of specific cytokines.  相似文献   

7.
A Henke  S Huber  A Stelzner    J L Whitton 《Journal of virology》1995,69(11):6720-6728
Coxsackievirus infections have previously been shown to cause acute or chronic myocarditis in humans, and several mouse models have been established to study the pathology of this disease. Myocardial injury may result from direct viral effects and/or may be immune mediated. To determine the relative roles of these processes in pathogenesis, we have compared coxsackievirus B3 (CVB3) infections of normal and immuno-compromised transgenic knockout (ko) mice. CVB3 was able to infect all strains used (C57BL/6, CD4ko, and beta-microglobulin ko [beta 2Mko]), and following intraperitoneal injection, two disease processes could be distinguished. First, the virus caused early (3 to 7 days postinfection) death in a viral dose-dependent manner. Immunocompetent C57BL/6 mice were highly susceptible (50% lethal dose = 70 PFU), while immunodeficient transgenic ko mice were less susceptible, showing 10- and 180-fold increases in the 50% lethal dose (for CD4ko and beta 2Mko mice, respectively). Second, a histologic examination of surviving CD4ko mice at 7 days postinfection revealed severe myocarditis; the inflammatory infiltrate comprised 40 to 50% macrophages, 30 to 40% NK cells, and 10 to 20% CD8+ T lymphocytes. The infiltration resolved over the following 2 to 3 weeks, with resultant myocardial fibrosis. In vivo depletion of CD8+ T lymphocytes from these CD4ko mice led to a marked reduction in myocarditis and an increase in myocardial virus titers. beta 2Mko mice, which lack antiviral CD8+ T cells, are much less susceptible to early death and to the development of myocarditis. We conclude that our data support a strong immunopathologic component in CVB3-induced disease and implicate both CD4+ and CD8+ T cells. Compared with immunocompetent animals, (i) mice lacking CD4+ T cells (CD4ko) were more resistant to virus challenge, and (ii) mice lacking CD8+ T cells (beta 2Mko and in vivo-depleted CD4ko) showed enhanced survival and a reduced incidence of the later myocarditis. Nevertheless, the picture is complex, since (iii) removal of the CD4+ component, while protecting against early death, greatly magnified the severity of myocarditis, and (iv) removal of the CD8+ cells from CD4ko mice, although protecting against early death and later myocarditis, led to markedly increased virus titers in the heart. These data underscore the complex balance between the costs and benefits of effective antiviral immune responses.  相似文献   

8.
M Caggana  P Chan    A Ramsingh 《Journal of virology》1993,67(8):4797-4803
To identify the molecular determinants of virulence for coxsackievirus B4, a panel of recombinant, chimeric viruses were constructed from cDNA clones of a virulent virus, CB4-V, and a nonvirulent virus, CB4-P. Initial studies mapped a major determinant of virulence to the 5' end of the viral genome, which contained the 5' untranslated and the P1 regions (A. Ramsingh, A. Hixson, B. Duceman, and J. Slack, J. Virol. 64:3078-3081, 1990). To determine whether the 5' untranslated region contributed to the virulent phenotype, a chimeric virus (vCB403) containing this region of the virulent virus on an avirulent background was tested in mice. The vCB403 construct displayed a phenotype similar to that of CB4-P, suggesting that the 5' untranslated region did not significantly contribute to virulence. Analysis of the sequence data of the P1 regions of both CB4-V and CB4-P revealed five mutations that resulted in amino acid substitutions in VP1, VP2, and VP4 (A. Ramsingh, H. Araki, S. Bryant, and A. Hixson, Virus Res. 23:281-292, 1992). Analysis of individual mutations in both VP1 and VP2 revealed that a single residue (Thr-129 of VP1) determined the virulent phenotype.  相似文献   

9.
The role of natural killer cells in the temporal development of coxsackievirus B3-induced myocarditis in adolescent CD-1 male mice was examined. Inoculation of purified CVB3m induced maximum NK cell activity in the splenic populations at 3 days postinoculation (p.i.) as assessed by lysis of YAC-1 cells; maximum virus titers in heart tissues were also found at day 3 p.i. Mice depleted of NK cells after injection of anti-asialo GM1 antiserum i.v. had decreased NK cell activity, increased CVB3m titers in heart tissues, and exacerbated myocarditis. Although lesion number was not increased in heart tissues of the latter mice, lesions in these mice exhibited increased myocyte degeneration and dystrophic calcification above that found in lesions of mice inoculated with CVB3m only. No alteration in interferon titers were observed in CVB3m-infected mice treated with anti-asialo GM1 antiserum as compared with normal CVB3m-infected mice. Measurements of splenic NK cell activity in mice inoculated with doses of 10(2) to 10(8) PFU of CVB3m per mouse or UV-irradiated virus suggest that replication of CVB3m is required for NK cell activation. An amyocarditic variant of CVB3m (ts5R) was shown to replicate in heart tissues and to elicit NK cell activity comparable to that elicited by CVB3m. Therefore, the data suggest that NK cell activation depends on virus replication and that these cells provide some protection against CVB3m-induced myocarditis by limiting virus replication in heart tissues.  相似文献   

10.
Induction of tolerance in memory T cells has profound implications in the treatment of autoimmune diseases and transplant rejection. Previously, we reported that the presentation of low densities of agonist peptide/MHC class II complexes induced anergy in memory CD4(+) T cells. In the present study, we address the specific interaction of different types of APCs with memory CD4(+) T cells. A novel ex vivo anergy assay first suggested that B cells induce anergy in memory T cells, and an in vivo cell transfer assay further confirmed those observations. We demonstrated that B cells pulsed with defined doses of Ag anergize memory CD4 cells in vivo. We established that CD11c(+) dendritic cells do not contribute to anergy induction to CD4 memory T cells, because diphtheria toxin receptor-transgenic mice that were conditionally depleted of dendritic cells optimally induced anergy in memory CD4(+) T cells. Moreover, B cell-deficient muMT mice did not induce anergy in memory T cells. We showed that B2 follicular B cells are the specific subpopulation of B cells that render memory T cells anergic. Furthermore, we present data showing that anergy in this system is mediated by CTLA-4 up-regulation on T cells. This is the first study to demonstrate formally that B cells are the APCs that induce anergy in memory CD4(+) T cells.  相似文献   

11.
12.
Memory T cells (T(M)) are able to rapidly exert effector functions, including immediate effector cytokine production upon re-encounter with Ag, which is critical for protective immunity. Furthermore, this poised state is maintained as T(M) undergo homeostatic proliferation over time. We examined the molecular basis underlying this enhanced functional capacity in CD8 T(M) by comparing them to defective CD8 T(M) generated in the absence of CD4 T cells. Unhelped CD8 T(M) are defective in many functions, including the immediate expression of cytokines, such as IL-2 and IFN-gamma. Our data show that this defect in IL-2 and IFN-gamma production is independent of clonal selection, functional avidity maturation, and the integrity of proximal TCR signaling, but rather involves epigenetic modification of these cytokine genes. Activated Ag-specific CD8 T cells exhibit rapid DNA demethylation at the IL-2 and IFN-gamma loci and substantial histone acetylation at the IFN-gamma promoter and enhancer regions. These epigenetic modifications occur early after infection at the effector stage and are maintained through memory development. However, activated unhelped CD8 T cells, which fail to develop into functional memory and are incapable of rapid cytokine production, exhibit increased DNA methylation at the IL-2 promoter and fail to acetylate histones at the IFN-gamma locus. Thus, CD4 T cell help influences epigenetic modification during CD8 T(M) differentiation and these epigenetic changes provide a molecular basis for the enhanced responsiveness and the maintenance of a "ready-to-respond" state in CD8 T(M).  相似文献   

13.
We have previously demonstrated that activation of protein kinase C (PKC) by phorbol esters induces selectively IgA synthesis by mouse B cells. In this study, we investigated the effects of a number of protein kinase inhibitors on IgA secretion induced by a recombinant murine IL-5 in LPS-stimulated mouse B cells. The results show that PKC inhibitors, such as sphingosine (SPH), staurosporine (STP) and H-7, blocked IL-5-induced IgA synthesis; the protein kinase A inhibitor HA-1004 and the inhibitor of calcium/calmodulin dependent protein kinase W-7 had no effect on IgA secretion induced by IL-5. The proliferation of the IL-5 sensitive B13 cell line in response to IL-5 was also inhibited by addition of SPH or STP or H-7. The data suggest an involvement of the PKC pathway in IL-5-induced B cell differentiation into IgA secreting cells.  相似文献   

14.
Huber SA  Sartini D  Exley M 《Journal of virology》2002,76(21):10785-10790
T cells expressing the Vgamma4 T-cell receptor (TCR) promote myocarditis in coxsackievirus B3 (CVB3)-infected BALB/c mice. CD1, a major histocompatibility complex (MHC) class I-like molecule, is required for activation of Vgamma4(+) cells. Once activated, Vgamma4(+) cells initiate myocarditis through gamma interferon (IFN-gamma)-mediated induction of CD4(+) T helper type 1 (Th1) cells in the infected animal. These CD4(+) Th1 cells are required for activation of an autoimmune CD8(+) alphabeta TCR(+) effector, which is the predominant pathogenic agent in this model of CVB3-induced myocarditis. Activated Vgamma4(+) cells can adoptively transfer myocarditis into BALB/c mice infected with a nonmyocarditic variant of CVB3 (H310A1) but cannot transfer myocarditis into either uninfected or CD1(-/-) recipients, demonstrating the need for both infection and CD1 expression for Vgamma4(+) cell function. In contrast, CD8(+) alphabeta TCR(+) cells transfer myocarditis into either infected CD1(-/-) or uninfected recipients, showing that once activated, the CD8(+) alphabeta TCR(+) effectors function independently of both virus and CD1. Vgamma4(+) cells given to mice lacking CD4(+) T cells minimally activate the CD8(+) alphabeta TCR(+) cells. These studies show that Vgamma4(+) cells determine CVB3 pathogenicity by their ability to influence both the CD4(+) and CD8(+) adaptive immune response. Vgamma4(+) cells enhance CD4(+) Th1 (IFN-gamma(+)) cell activation through IFN-gamma- and CD1-dependent mechanisms. CD4(+) Th1 cells promote activation of the autoimmune CD8(+) alphabeta TCR(+) effectors.  相似文献   

15.
16.
Recent studies in both human and rodents have indicated that in addition to CD4+ T cells, CD8+ T cells play an important role in allergic inflammation. We previously demonstrated that allergen-sensitized and -challenged CD8-deficient (CD8-/-) mice develop significantly lower airway hyperresponsiveness (AHR), eosinophilic inflammation, and IL-13 levels in bronchoalveolar lavage fluid compared with wild-type mice, and that all these responses were restored by adoptive transfer of in vivo-primed CD8+ T cells or in vitro-generated effector CD8+ T cells (T(EFF)). Recently, leukotriene B4 and its high affinity receptor, BLT1, have been shown to mediate in vitro-generated T(EFF) recruitment into inflamed tissues. In this study we investigated whether BLT1 is essential for the development of CD8+ T cell-mediated allergic AHR and inflammation. Adoptive transfer of in vivo-primed BLT1+/+, but not BLT1-/-, CD8+ T cells into sensitized and challenged CD8-/- mice restored AHR, eosinophilic inflammation, and IL-13 levels. Moreover, when adoptively transferred into sensitized CD8-/- mice, in vitro-generated BLT1+/+, but not BLT1-/-, T(EFF) accumulated in the lung and mediated these altered airway responses to allergen challenge. These data are the first to show both a functional and an essential role for BLT1 in allergen-mediated CD8+ T(EFF) recruitment into the lung and development of AHR and airway inflammation.  相似文献   

17.
Bacteriophage T4 carrying an amber mutation in gene 22 plus an amber mutation in gene 21 form aberrant, tubular structures termed rough polyheads, instead of complete phage when they infect Escherichia coli B. These rough polyheads consist almost entirely of the major capsid protein in its uncleaved form (gp23). When rough polyheads are treated under mild conditions with any of the five proteases, trypsin, chymotrypsin, thermolysin, pronase, or the protease from Staphylococcus aureus V8, the gp23 is rapidly hydrolyzed at a limited number of peptide bonds. In contrast, cleaved capsid protein (gp23) in mature phage capsids is completely resistant to proteolysis under the same conditions. A major project in this laboratory requires determining the primary structure of gp23, a large protein (Mr = 58,000) quite rich in those amino acids at which cleavages are achieved by conventional means. Recovery of peptides from the complex mixtures resulting from such cleavages proved to be extremely difficult. The limited proteolysis of gp23 in rough polyheads had yielded a set of large, easily purified fragments which are greatly simplifying the task of determining the primary structure of this protein.  相似文献   

18.
Flow linear dichroic studies have been conducted on phage T4B in its fast and slow forms. The behavior of the phages is well represented by an equivalent ellipsoid model using the Peterlin-Stuart theory. The measurements permit the evaluation of the optical factor of the DNA in the phage and the rotary diffusion coefficient of the phage particle. Both these quantities change during the slow–fast conversion. The rotary diffusion results are in good agreement with those obtained by other workers with other methods. The optical factor is negative, indicating a net alignment of DNA helices parallel to the phage axis. The results exclude certain simplified models for the packaged DNA but do not lead to a unique structural conclusion. The flow dichroism experiment and its interpretation are described, and a simple method of calculating optical factors for complicated but cylindrically symmetric structures is presented.  相似文献   

19.
20.
Coxsackievirus B4 (CBV4), a member of the Picornavirus genus, has long been implicated in the development of insulin-dependent diabetes mellitus (IDDM) caused by virus-induced pancreatic cell damage. The progressive destruction of pancreatic beta cells is responsible for the development of IDDM. It has recently been suggested that CBV4 infection can induce the production of proinflammatory cytokines, and these cytokines seem to be involved in the damage to the insulin-producing cells. In this study we investigated whether toll-like receptors (TLRs) are responsible for triggering the proinflammatory cytokine production in human pancreatic cells in response to CBV4. Here we demonstrate that CBV4 triggers cytokine production through a TLR4-dependent pathway. This interaction seems to be independent of virus attachment and cell entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号