首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bimolecular fluorescence complementation (BiFC) analysis enables visualization of the subcellular locations of protein interactions in living cells. Using fragments of different fluorescent proteins, we investigated the temporal resolution and the quantitative accuracy of BiFC analysis. We determined the kinetics of BiFC complex formation in response to the rapamycin-inducible interaction between the FK506 binding protein (FKBP) and the FKBP-rapamycin binding domain (FRB). Fragments of yellow fluorescent protein fused to FKBP and FRB produced detectable BiFC complex fluorescence 10 min after the addition of rapamycin and a 10-fold increase in the mean fluorescence intensity in 8 h. The N-terminal fragment of the Venus fluorescent protein fused to FKBP produced constitutive BiFC complexes with several C-terminal fragments fused to FRB. A chimeric N-terminal fragment containing residues from Venus and yellow fluorescent protein produced either constitutive or inducible BiFC complexes depending on the temperature at which the cells were cultured. The concentrations of inducers required for half-maximal induction of BiFC complex formation by all fluorescent protein fragments tested were consistent with the affinities of the inducers for unmodified FKBP and FRB. Treatment with the FK506 inhibitor of FKBP-FRB interaction prevented the formation of BiFC complexes by FKBP and FRB fusions, but did not disrupt existing BiFC complexes. Proteins synthesized before the addition of rapamycin formed BiFC complexes with the same efficiency as did newly synthesized proteins. Inhibitors of protein synthesis attenuated BiFC complex formation independent of their effects on fusion protein synthesis. The kinetics at which they inhibited BiFC complex formation suggests that they prevented association of the fluorescent protein fragments, but not the slow maturation of BiFC complex fluorescence. Agents that induce the unfolded protein response also reduced formation of BiFC complexes. The effects of these agents were suppressed by cellular adaptation to protein folding stress. In summary, BiFC analysis enables detection of protein interactions within minutes after complex formation in living cells, but does not allow detection of complex dissociation. Conditional BiFC complex formation depends on the folding efficiencies of fluorescent protein fragments and can be affected by the cellular protein folding environment.  相似文献   

3.
Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells.BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.  相似文献   

4.
Shyu YJ  Liu H  Deng X  Hu CD 《BioTechniques》2006,40(1):61-66
Protein-protein interactions play a pivotal role in coordinating many cellular processes. Determination of subcellular localization of interacting proteins and visualization of dynamic interactions in living cells are crucial to elucidate cellular functions of proteins. Using fluorescent proteins, we previously developed a bimolecular fluorescence complementation (BiFC) assay and a multicolor BiFC assay to visualize protein-protein interactions in living cells. However, the sensitivity of chromophore maturation of enhanced yellow fluorescent protein (YFP) to higher temperatures requires preincubation at lower temperatures prior to visualizing the BiFC signal. This could potentially limit their applications for the study of many signaling molecules. Here we report the identification of new fluorescent protein fragments derived from Venus and Cerulean for BiFC and multicolor BiFC assays under physiological culture conditions. More importantly, the newly identified combinations exhibit a 13-fold higher BiFC efficiency than originally identified fragments derived from YFP. Furthermore, the use of new combinations reduces the amount of plasmid required for transfection and shortens the incubation time, leading to a 2-fold increase in specific BiFC signals. These newly identified fluorescent protein fragments will facilitate the study of protein-protein interactions in living cells and whole animals under physiological conditions.  相似文献   

5.
Most of the biological processes are carried out and regulated by dynamic networks of protein-protein interactions. In this study, we demonstrate the feasibility of the bimolecular fluorescence complementation (BiFC) assay for in vivo quantitative analysis of protein-protein interactions in Saccharomyces cerevisiae. We show that the BiFC assay can be used to quantify not only the amount but also the cell-to-cell variation of protein-protein interactions in S. cerevisiae. In addition, we show that protein sumoylation and condition-specific protein-protein interactions can be quantitatively analyzed by using the BiFC assay. Taken together, our results validate that the BiFC assay is a very effective method for quantitative analysis of protein-protein interactions in living yeast cells and has a great potential as a versatile tool for the study of protein function.  相似文献   

6.
The specificity of intracellular signaling and developmental patterning in biological systems relies on selective interactions between different proteins in specific cellular compartments. The identification of such protein-protein interactions is essential for unraveling complex signaling and regulatory networks. Recently, bimolecular fluorescence complementation (BiFC) has emerged as a powerful technique for the efficient detection of protein interactions in their native subcellular localization. Here we report significant technical advances in the methodology of plant BiFC. We describe a series of versatile BiFC vector sets that are fully compatible with previously generated vectors. The new vectors enable the generation of both C-terminal and N-terminal fusion proteins and carry optimized fluorescent protein genes that considerably improve the sensitivity of BiFC. Using these vectors, we describe a multicolor BiFC (mcBiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. Application to a protein interaction network acting in calcium-mediated signal transduction revealed the concurrent interaction of the protein kinase CIPK24 with the calcium sensors CBL1 and CBL10 at the plasma membrane and tonoplast, respectively. We have also visualized by mcBiFC the simultaneous formation of CBL1/CIPK1 and CBL9/CIPK1 protein complexes at the plasma membrane. Thus, mcBiFC provides a useful new tool for exploring complex regulatory networks in plants.  相似文献   

7.
The application of novel assays for basic cell research is tightly linked to the development of easy-to-use and versatile tools and protocols for implementing such technologies for a wide range of applications and model species. The bimolecular fluorescence complementation (BiFC) assay is one such novel method for which tools and protocols for its application in plant cell research are still being developed. BiFC is a powerful tool which enables not only detection, but also visualization and subcellular localization of protein–protein interactions in living cells. Here we describe the application of BiFC in plant cells while focusing on the use of our versatile set of vectors which were specifically designed to facilitate the transformation, expression and imaging of protein–protein interactions in various plant species. We discuss the considerations of using our system in various plant model systems, the use of single versus multiple expression cassettes, the application of our vectors using various transformation methods and the use of internal fluorescent markers which can assist in signal localization and easy data acquisition in living cells.  相似文献   

8.
Plant functional proteomics research is increasingly dependent upon vectors that facilitate high-throughput gene cloning and expression of fusions to autofluorescent proteins. Here, we describe the pSITE family of plasmids, a new set of Agrobacterium binary vectors, suitable for the stable integration or transient expression of various autofluorescent protein fusions in plant cells. The pSITE vectors permit single-step Gateway-mediated recombination cloning for construction of binary vectors that can be used directly in transient expression studies or for the selection of transgenic plants on media containing kanamycin. These vectors can be used to express native proteins or fusions to monmeric red fluorescent protein or the enhanced green fluorescent protein and its cyan and yellow-shifted spectral variants. We have validated the vectors for use in transient expression assays and for the generation of transgenic plants. Additionally, we have generated markers for fluorescent highlighting of actin filaments, chromatin, endoplasmic reticulum, and nucleoli. Finally, we show that pSITE vectors can be used for targeted gene expression in virus-infected cells, which should facilitate high-throughput characterization of protein dynamics in host-virus interactions.  相似文献   

9.
The specificity of biological regulatory mechanisms relies on selective interactions between different proteins in different cell types and in response to different extracellular signals. We describe a bimolecular fluorescence complementation (BiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. This approach is based on complementation between fragments of fluorescent proteins with different spectral characteristics. We have identified 12 bimolecular fluorescent complexes that correspond to 7 different spectral classes. Bimolecular complex formation between fragments of different fluorescent proteins did not differentially affect the dimerization efficiency of the bZIP domains of Fos and Jun or the subcellular sites of interactions between these domains. Multicolor BiFC enables visualization of interactions between different proteins in the same cell and comparison of the efficiencies of complex formation with alternative interaction partners.  相似文献   

10.
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein–protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red).  相似文献   

11.
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.  相似文献   

12.
Protein function is often mediated via formation of stable or transient complexes. Here we report the determination of protein-protein interactions in plants using bimolecular fluorescence complementation (BiFC). The yellow fluorescent protein (YFP) was split into two non-overlapping N-terminal (YN) and C-terminal (YC) fragments. Each fragment was cloned in-frame to a gene of interest, enabling expression of fusion proteins. To demonstrate the feasibility of BiFC in plants, two pairs of interacting proteins were utilized: (i) the alpha and beta subunits of the Arabidopsis protein farnesyltransferase (PFT), and (ii) the polycomb proteins, FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA). Members of each protein pair were transiently co-expressed in leaf epidermal cells of Nicotiana benthamiana or Arabidopsis. Reconstitution of a fluorescing YFP chromophore occurred only when the inquest proteins interacted. No fluorescence was detected following co-expression of free non-fused YN and YC or non-interacting protein pairs. Yellow fluorescence was detected in the cytoplasm of cells that expressed PFT alpha and beta subunits, or in nuclei and cytoplasm of cells that expressed FIE and MEA. In vivo measurements of fluorescence spectra emitted from reconstituted YFPs were identical to that of a non-split YFP, confirming reconstitution of the chromophore. Expression of the inquest proteins was verified by immunoblot analysis using monoclonal antibodies directed against tags within the hybrid proteins. In addition, protein interactions were confirmed by immunoprecipitations. These results demonstrate that plant BiFC is a simple, reliable and relatively fast method for determining protein-protein interactions in plants.  相似文献   

13.
An improved mRFP1 adds red to bimolecular fluorescence complementation   总被引:1,自引:0,他引:1  
Protein-protein interactions are fundamental to virtually every aspect of cellular functions. Blue, green and yellow bimolecular fluorescence complementation (BiFC) systems based on GFP and its variants allow the investigation of protein-protein interactions in vivo. We have developed the first red BiFC system based on an improved monomeric red fluorescent protein (mRFP1-Q66T), expanding the range of possible applications for BiFC.  相似文献   

14.
Zinc transporters (ZnTs) facilitate zinc efflux and zinc compartmentalization, thereby playing a key role in multiple physiological processes and pathological disorders, presumed to be modulated by transporter dimerization. We recently proposed that ZnT2 homodimerization is the underlying basis for the dominant negative effect of a novel heterozygous G87R mutation identified in women producing zinc-deficient milk. To provide direct visual evidence for the in situ dimerization and function of multiple normal and mutant ZnTs, we applied here the bimolecular fluorescence complementation (BiFC) technique, which enables direct visualization of specific protein-protein interactions. BiFC is based upon reconstitution of an intact fluorescent protein including YFP when its two complementary, non-fluorescent N- and C-terminal fragments (termed YN and YC) are brought together by a pair of specifically interacting proteins. Homodimerization of ZnT1, -2, -3, -4, and -7 was revealed by high subcellular fluorescence observed upon co-transfection of non-fluorescent ZnT-YC and ZnT-YN; this homodimer fluorescence localized in the characteristic compartments of each ZnT. The validity of the BiFC assay in ZnT dimerization was further corroborated when high fluorescence was obtained upon co-transfection of ZnT5-YC and ZnT6-YN, which are known to form heterodimers. We further show that BiFC recapitulated the pathogenic role that ZnT mutations play in transient neonatal zinc deficiency. Zinquin, a fluorescent zinc probe applied along with BiFC, revealed the in situ functionality of ZnT dimers. Hence, the current BiFC-Zinquin technique provides the first in situ evidence for the dimerization and function of wild type and mutant ZnTs in live cells.  相似文献   

15.
16.
The bimolecular fluorescence complementation (BiFC) assay is a powerful tool for visualizing and identifying protein interactions in living cells. This assay is based on the principle of protein-fragment complementation, using two nonfluorescent fragments derived from fluorescent proteins. When two fragments are brought together in living cells by tethering each to one of a pair of interacting proteins, fluorescence is restored. Here, we provide a protocol for a Venus-based BiFC assay to visualize protein interactions in the living nematode, Caenorhabditis elegans. We discuss how to design appropriate C. elegans BiFC cloning vectors to enable visualization of protein interactions using either inducible heat shock promoters or native promoters; transform the constructs into worms by microinjection; and analyze and interpret the resulting data. When expression of BiFC fusion proteins is induced by heat shock, the fluorescent signals can be visualized as early as 30 min after induction and last for 24 h in transgenic animals. The entire procedure takes 2-3 weeks to complete.  相似文献   

17.
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.  相似文献   

18.
Protein interactions are essential components of signal transduction in cells. With the progress in genome-wide yeast two hybrid screens and proteomics analyses, many protein interaction networks have been generated. These analyses have identified hundreds and thousands of interactions in cells and organisms, creating a challenge for further validation under physiological conditions. The bimolecular fluorescence complementation (BiFC) assay is such an assay that meets this need. The BiFC assay is based on the principle of protein fragment complementation, in which two non-fluorescent fragments derived from a fluorescent protein are fused to a pair of interacting partners. When the two partners interact, the two non-fluorescent fragments are brought into proximity and an intact fluorescent protein is reconstituted. Hence, the reconstituted fluorescent signals reflect the interaction of two proteins under study. Over the past six years, the BiFC assay has been used for visualization of protein interactions in living cells and organisms, including our application of the BiFC assay to the transparent nematode Caenorhabditis elegans. We have demonstrated that BiFC analysis in C. elegans provides a direct means to identify and validate protein interactions in living worms and allows visualization of temporal and spatial interactions. Here, we provide a guideline for the implementation of BiFC analysis in living worms and discuss the factors that are critical for BiFC analysis.  相似文献   

19.
Fluorescent protein (FP) has enabled the analysis of biomolecular interactions in living cells, and bimolecular fluorescence complementation (BiFC) represents one of the newly developed imaging technologies to directly visualize protein–protein interactions in living cells. Although 10 different FPs that cover a broad range of spectra have been demonstrated to support BiFC, only Cerulean (cyan FP variant), Citrine and Venus (yellow FP variants)-based BiFC systems can be used under 37 °C physiological temperature. The sensitivity of two mRFP-based red BiFC systems to higher temperatures (i.e., 37 °C) limits their applications in most mammalian cell-based studies. Here we report that mLumin, a newly isolated far-red fluorescent protein variant of mKate with an emission maximum of 621 nm, enables BiFC analysis of protein–protein interactions at 37 °C in living mammalian cells. Furthermore, the combination of mLumin with Cerulean- and Venus-based BiFC systems allows for simultaneous visualization of three pairs of protein–protein interactions in the same cell. The mLumin-based BiFC system will facilitate simultaneous visualization of multiple protein–protein interactions in living cells and offer the potential to visualize protein–protein interactions in living animals.  相似文献   

20.
Kerppola TK 《Nature protocols》2006,1(3):1278-1286
Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the discoveries that two non-fluorescent fragments of a fluorescent protein can form a fluorescent complex and that the association of the fragments can be facilitated when they are fused to two proteins that interact with each other. BiFC must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. It is not necessary for the interaction partners to juxtapose the fragments within a specific distance of each other because they can associate when they are tethered to a complex with flexible linkers. It is also not necessary for the interaction partners to form a complex with a long half-life or a high occupancy since the fragments can associate in a transient complex and un-associated fusion proteins do not interfere with detection of the complex. Many interactions can be visualized when the fusion proteins are expressed at levels comparable to their endogenous counterparts. The BiFC assay has been used for the visualization of interactions between many types of proteins in different subcellular locations and in different cell types and organisms. It is technically straightforward and can be performed using a regular fluorescence microscope and standard molecular biology and cell culture reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号