首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Optical stopped-flow techniques have been used to determine the dissociation rate constants (koff) for the lanthanide(III) ions from carp (pI 4.25) parvalbumin. For most of the 13 different lanthanides studied, the release kinetics were diphasic, composed of both a fast phase (whose rate varied across the series, La3+ leads to Lu3+, between the limits -1.2 less than or equal to log kFAST less than or equal to -0.7) and a slower phase (whose rate varied across the series, La3+ leads to Lu3+, between the limits -1.2 greater than or equal to log kSLOW greater than or equal to -2.9). In addition, the La3+- and Lu3+-induced changes in the 270-MHz proton nuclear magnetic resonance spectrum of parvalbumin were used to calculate the dissociation constants for these specific lanthanides from the two high-affinity Ca2+ binding sites. The KD for one site appears to remain constant across the lanthanide series, determined to be 4.8 X 10(-11) M for both La3+ and Lu3+. The other site, however, is evidently quite sensitive to the nature of the bound Ln3+ ion and shows a strong preference for La3+ (KD,La = 2.0 X 10(-11) M; KD,Lu = 3.6 X 10(-10) M). We conclude from these observations that reports of nearly indistinguishable CD/EF binding site affinities for parvalbumin complexes of the middle-weight lanthanides (i.e., Eu3+, Gd3+, and Tb3+) are quite reasonable in view of the crossover in relative CD/EF site affinities across the lanthanide series.  相似文献   

2.
13C NMR spectra are presented for the calcium binding protein parvalbumin (pI 4.25) from carp muscle in several different metal bound forms: with Ca2+ in both the CD and EF calcium binding sites, with Cd2+ in both sites, with 113Cd2+ in both sites, and with 113Cd2+ in the CD site and Lu3+ in the EF site. The different metals differentially shift the 13C NMR resonances of the protein ligands involved in chelation of the metal ion. In addition, direct 13C-113Cd spin-spin coupling is observed which allows the assignment of protein carbonyl and carboxyl 13C NMR resonances to ligands directly interacting with the metal ions in the CD and EF binding sites. The displacement of 113Cd2+ from the EF site by Lu3+ further allows these resonances to be assigned to the CD or EF site. The occupancy of the two sites in the two cadmium species and in the mixed Cd2+/Lu3+ species is verified by 113Cd NMR. The resolution in these 113Cd NMR spectra is sufficient to demonstrate direct interaction between the two metal binding sites.  相似文献   

3.
Steric restrictions on the binding of large metal ions to serum transferrin   总被引:5,自引:0,他引:5  
Apotransferrin in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid at 25 degrees C and pH 7.4 was titrated with acidic solutions of Lu3+, Tb3+, and Eu3+. Metal binding at the two specific metal-binding sites of transferrin was followed from changes in the difference UV spectra at 245 nm. The binding of Tb3+ was also followed from changes in the fluorescence emission spectrum at 549 nm. Apotransferrin was titrated with solutions containing varying ratios of the metal ion and the competitive chelating agent nitrilotriacetic acid, and metal-transferrin binding constants were calculated by nonlinear least-squares fits of the absorbance as a function of titrant added. The sequential carbonate-independent equilibrium constants for the binding of two metal ions are log KM1 = 11.08 and log KM2 = 7.93 for Lu3+, log KM1 = 11.20 and log KM2 = 7.61 for Tb3+, and log KM1 = 9.66 and log KM2 = 7.27 for Eu3+. Titrations of both C-terminal and N-terminal monoferric transferrins indicate that all of these metal ions bind more strongly to the C-terminal binding site. The trend in log K values as a function of the lanthanide ionic radius has been evaluated both by plots of log K versus the metal ion charge/radius ratio and by linear free-energy relationships in which binding constants for complexes of the larger lanthanides are plotted versus the binding constants for complexes with the smallest lanthanide, Lu3+. Both methods indicate that there is a sharp drop in the binding constants for the C-terminal binding site for metals larger than Tb3+. This decrease is attributed to a steric hindrance to the binding of the larger cations. The steric effect is not as strong for metal binding at the N-terminal site. As a result, the selectivity for binding to the C-terminal site, which is quite high for the smaller lanthanides, drops sharply on going from Tb3+ to Nd3+.  相似文献   

4.
Luminescence methods were used to examine the interaction of Eu(III) and Tb(III) with parvalbumin isozyme III from pike (Esox lucius). The bound lanthanide ions were excited both directly, via laser irradiation, and indirectly, via fluorescence energy transfer from adjacent phenylalanine residues. At high (175 microM) protein concentrations, the lanthanide titration curves exhibited pronounced quenching of luminescence at Ln3+:parvalbumin ratios above 2:1, in agreement with earlier reports (Donato, H., Jr., and Martin, R. B. (1974) Biochemistry 13, 4575-4579). However, in experiments performed with lower concentrations (10 microM), the titrations were well behaved and indicated a lanthanide:protein stoichiometry of 2:1. Equilibrium dialysis measurements performed with Eu(III) ruled out the existence of a third strong binding site which could cause the quenching of the luminescence at high protein concentrations. Similarly, careful analysis of the spectrum that results from direct excitation of the 7F0----5D0 transition of parvalbumin-bound Eu3+ ion revealed no peak attributable to a third Ln3+-binding site. The peak which has been construed by others (Rhee, M.-J., Sudnick, D. R., Arkle, V. K., and Horrocks, W. DeW., Jr. (1981) Biochemistry 20, 3328-3334) as evidence for a third site was shown to result from a pH-dependent spectral transition involving the europium ions bound at the CD and EF sites. Luminescent lifetime measurements performed on Tb(III)/parvalbumin solutions follow Stern-Volmer quenching kinetics at terbium:protein ratios in excess of 2:1, suggesting that the quenching results from collisional deactivation of the tightly bound ions by excess terbium ion free in solution.  相似文献   

5.
Oncomodulin, the parvalbumin-like calcium-binding protein frequently expressed in tumor tissue, was isolated from Morris hepatoma 5123tc and studied using the luminescent lanthanide ions, Eu3+ and Tb3+. Titrations of the apoprotein - whether monitored by indirect excitation of bound Tb3+, by direct laser excitation of bound Eu3+, or by quenching of the intrinsic tyrosine fluorescence - all indicated the presence of two high-affinity binding sites for lanthanide ions, as in parvalbumin. Moreover, the appearance of the Eu3+ 7F0----5D0 excitation spectrum of Eu2-oncomodulin was found to be highly pH-dependent, as previously observed with parvalbumin. At pH 5.0, it consists of a single peak centered at 5796 A, having a linewidth of approximately 6 A. At higher pH values, this spectrum is replaced by a broader, more symmetric peak at 5782 A. Oncomodulin, however, was found to differ from parvalbumin in at least one important respect: In contrast to the muscle-associated protein, the affinities of the CD site in oncomodulation for Tb3+ and Ca2+ were found to be rather similar, with KCa/KTb approximately equal to 11 +/- 2.  相似文献   

6.
D T Cronce  W D Horrocks 《Biochemistry》1992,31(34):7963-7969
Excitation spectroscopy of the 7F0----5D0 transition of Eu3+ and diffusion-enhanced energy transfer are used to study metal-binding characteristics of the calcium-binding protein parvalbumin from codfish. Energy is transferred from Eu3+ ions occupying the CD- and EF-binding sites to the freely-diffusing Co(III) coordination complex energy acceptors: [Co(NH3)6]3+, [Co(NH3)5H2O]3+, [CoF(NH3)5]2+, [CoCl(NH3)5]2+, [Co(NO2)3(NH3)3], and [Co(ox)3]3-. In the absence of these inorganic energy acceptors, the excited-state lifetimes of Eu3+ bound to the CD and EF sites are indistinguishable, even in D2O; however, in the presence of the positively charged energy acceptor complexes, the Eu3+ probes in the cod parvalbumin have different excited-state lifetimes due to a greater energy-transfer site from Eu3+ in the CD site than from this ion in the EF site. The observation of distinct lifetimes for Eu3+ in the two sites allows the study of the relative binding site affinities and selectivity, using other members of the lanthanide ion series. Our results indicate that during the course of a titration of the metal-free protein, Eu3+ fills the two sites simultaneously. Eu3+ is competitively displaced by other Ln3+ ions, with the CD site showing a preference for the larger Ln3+ ions while the EF site shows little, if any, competitive selectivity across the Ln3+ ion series.  相似文献   

7.
8.
Fluorimetric titrations of parvalbumin II (pI 4.2) of pike (Pike II) with Ca2+ and Tb3+ show the CD and EF binding sites to be non-equivalent. The intrinsic binding constants of the strong and the weak sites obtained for Ca2+ are: KsCa = 1.6.10(8) M-1; KwCa = 6.6.10(5) M-1. Differences of the order of 100% were encountered between the Tb3+ binding constants obtained with four different versions of titration. Their average values are: KsTb = 1.9.10(11) M-1; KwTb = 1.0.10(7) M-1. The distances of the strong and the weak sites from the singular Tyr-48, rs = 9.5 A and r2 = 11.5 A, were derived from F?rster-type energy transfer and proved compatible with the X-ray structure of parvalbumin III (pI 4.2) of carp (CarpIII). From the distances, it is suggested that CD is the strong and EF the weak metal-binding site of PikeII. Tb3+ was shown by CD spectroscopy to have the same structural effect on PikeII as Ca2+. Removal of the metal ions from PikeII results in a decrease of helix content as monitored by CD spectroscopy. This decrease is larger than that in CarpIII. A concomitant decrease of the fluorescence quantum yield at nearly constant decay time is indicative of mainly static quenching, probably by the non-coordinating carboxylate groups. The maximum helix content is almost completely reestablished upon binding of the first metal ion. However, small changes of the energy transfer in PikeII with one terbium ion bound to the strong site indicate fine structural rearrangements of the strong binding site when Ca2+ is bound to the weak one.  相似文献   

9.
Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A.  相似文献   

10.
We attempted to establish whether lanthanide ions, when added to sarcoplasmic reticulum (SR) membranes in the absence of nucleotide, compete with Ca2+ for binding to the transport sites of the Ca(2+)-ATPase in these membranes, or whether they bind to different sites. Equilibrium measurements of the effect of lanthanide ions on the intrinsic fluorescence of SR ATPase and on 45Ca2+ binding to it were performed either at neutral pH (pH 6.8), i.e. when endogenous or contaminating Ca2+ was sufficient to nearly saturate the ATPase transport sites, or at acid pH (pH 5.5), which greatly reduced the affinity of calcium for its sites on the ATPase. These measurements did reveal apparent competition between Ca2+ and the lanthanide ions La3+, Gd3+, Pr3+, and Tb3+, which all behaved similarly, but this competition displayed unexpected features: lanthanide ions displaced Ca2+ with a moderate affinity and in a noncooperative way, and the pH dependence of this displacement was smaller than that of the Ca2+ binding to its own sites. Simultaneously, we directly measured the amount of Tb3+ bound to the ATPase relative to the amount of Ca2+ and found that Tb3+ ions only reduced significantly the amount of Ca2+ bound after a considerable number of Tb3+ ions had bound. Furthermore, when we tested the effect of Ca2+ on the amount of Tb3+ bound to the SR membranes, we found that the Tb3+ ions which bound at low Tb3+ concentrations were not displaced when Ca2+ was added at concentrations which saturated the Ca2+ transport sites. We conclude that the sites on SR ATPase to which lanthanide ions bind with the highest affinity are not the high affinity Ca2+ binding and transport sites. At higher concentrations, lanthanide ions did not appear to be able to replace Ca2+ ions and preserve the native structure of their binding pocket, as evaluated in rapid filtration measurements from the effect of moderate concentrations of lanthanide ions on the kinetics of Ca2+ dissociation. Thus, the presence of lanthanide ions slowed down the dissociation from its binding site of the first, superficially bound 45Ca2+ ion, instead of specifically preventing the dissociation of the deeply bound 45Ca2+ ion. These results highlight the need for caution when interpreting, in terms of calcium sites, experimental data collected using lanthanide ions as spectroscopic probes on SR membrane ATPase.  相似文献   

11.
The rates of dissociation of 2 equiv of various metal ions [Ca(II), Cd(II), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III)] from the primary CD and EF metal ion binding sites of parvalbumin (isotype pI = 4.75) from codfish (Gadus callarius L) were measured by stopped-flow techniques. The removal or replacement of metal ions was monitored by changes in sensitized Tb(III) luminescence or in intrinsic protein tryptophan fluorescence as quenching ions [Eu(III) or Yb(III)] were bound or removed or as the apoprotein was formed. In experiments wherein the bound metal ions were removed by mixing the parvalbumin with an excess of 1,2-diaminocyclohexanetetraacetic acid (DCTA), the kinetic traces were best fit by a double exponential with koff rate constants of 1.07 and 5.91 s-1 for Ca(II), 1.54 and 10.5 s-1 for Cd(II), and approximately 0.05 and approximately 0.5 s-1 for all of the trivalent lanthanide ions. In experiments wherein the bound metal ions were exchanged with an excess of a different metal ion, pseudo-first-order rate constants were proportional to the concentration of excess attacking metal ion for both the fast and slow processes in most experiments. In these cases, extrapolation of the rate constants to zero concentration of attacking metal ion gave values which agree well with the DCTA scavenging results. This finding demonstrates that the off rate constants do not depend on the occupancy of the neighboring site and therefore implies that there is no significant cooperativity in metal ion binding between the two sites in parvalbumin.  相似文献   

12.
Calmodulin, spin labeled at Tyr-99, has been titrated with the lanthanides La3+, Nd3+, Eu3+, Tb3+, Er3+ and Lu3+ as well as Ca2+ and Cd2+. The titration was monitored by EPR and changes in mobility of the spin label, due to binding into the labeled site and protein conformational change, were observed. Comparison of these titration curves with theoretical binding curves for the various calmodulin-metal species, show that different lanthanides have different high affinity sites. Three basic categories were observed, with Lu3+ and Er3+ behaving like Ca2+, Eu3+ and Tb3+ binding in the opposite order from Ca2+, and La3+ and Nd3+ different from either Ca2+ or Tb3+.  相似文献   

13.
The binding of Na+ and K+ to whiting parvalbumin (pI 4.4) and pike parvalbumins (pI 4.2 and 5.0) results in a shift of the tryptophan fluorescence spectrum towards shorter wavelengths by 2-4 nm for the whiting protein and in a rise of the tyrosine and phenylalanine fluorescence quantum yield for the pike proteins. The effective binding constants of Na+ and K+ to parvalbumins are within the range of 10 M-1 to 100 M-1. Physiological concentrations of Na+ and K+ lower the affinity of whiting parvalbumin for Ca2+ and Mg2+ by almost an order of magnitude.  相似文献   

14.
Close coorelation of atomic absorption measurements for Ca(II) contents indicates that from pH 5.8-7.4 a twentyfold excess of EGTA1 removes but one of two Ca(II) from carp parvalbumin. Thus binding of the two Ca(II) appears to be noncooperative. The maximum in emission intensity observed at a nonintegral 1.4-1.7 equivs of added Tb(III) is shown to be due to quenching by excess Tb(III). The emission intensity at the maximum increased 40% upon dialysis to remove Tb(III) not bound in the CD or EF sites. Atomic absorption results show that both Ca(CD) and Ca(EF) of native parvalbumin are easily replaced by Tb(III). Emission of Tb(EF) is not quenched by Tb(CD), but by solution Tb(III) bound at a third site, perhaps the single water molecule bound to Tb(EF). Labeling of the single sulfhydryl group with a trifluoroacetonyl gorup yields a protein with ultraviolet circular dichroism, emission, and circularly polarized emission spectra closely similar to those of native parvalbumin.  相似文献   

15.
The 7F0----5D0 transition of Eu3+ was used to probe the metal-binding domains of rat oncomodulin and rat parvalbumin. Two distinct differences between the two proteins were observed. The first relates to the pH-dependent behavior of their 7F0----5D0 spectra, a phenomenon noted previously for other paravalbumins. In the case of rat parvalbumin, the spectral features associated with both metal-binding sites titrate concomitantly (pK alpha = 8.2); however, in the case of oncomodulin, the two sites titrate sequentially (pK alpha = 6.3 for the CD site; pK alpha = 8.3 for EF site). The proteins also contrast with regard to their discrimination for Eu3+ over Ca2+. The CD and EF sites in rat parvalbumin both display a large preference for Eu3+: (KCa/KEu)CD = 143 +/- 11 and (KCa/KEu)EF = 191 +/- 30. However, in the case of oncomodulin, although the EF site of oncomodulin greatly prefers the trivalent lanthanide ion (KCa/KEu = 300 +/- 80), the CD site exhibits a relatively minor preference (KCa/KEu = 11 +/- 1).  相似文献   

16.
The interactions of Tb3+ with the quadruplex-forming oligonucleotide bearing human telomeric repeat sequence d(G(3)T(2)AG(3)T(2)AG(3)T(2)AG(3)), (htel21), have been studied using luminescence spectroscopy and circular dichroism (CD). Enhanced luminescence of Tb3+, resulting from energy transfer from guanines, indicated encapsulation of Tb3+ ion in the central cavity of quadruplex core. The ability of lanthanide ions (Eu3+ and Tb3+) to mediate formation of quadruplex structure has been further evidenced by the fluorescence energy transfer measurements with the use of oligonucleotide probe labeled with fluorescein and rhodamine FRET partners, FAM-htel21-TAMRA. The CD spectra revealed that Tb3+/htel21 quadruplex possesses antiparallel strand orientation, similarly as sodium quadruplex. Tb3+ binding equilibria have been investigated in the absence and the presence of competing metal cations. At low Tb3+ concentration (8 microM) Tb3+/htel21 quadruplex stability is very high (5 x 10(6) M(-1)) and stoichiometry of 5-7 Tb3+ ions per one quadruplex molecule is observed. Luminescence and CD titration experiments suggested that the cavity of quadruplex accommodates two Tb3+ ions and the remaining Tb3+ ions bind probably to TTA loops of quadruplex. Higher concentration of Tb3+ (above 10 microM) results in the excessive binding of Tb3+ ions that finally destabilizes quadruplex, which undergoes transformation into differently organized assemblies. Such assemblies (probably possessing multiple positive charge) exhibit kinetic stability, which is manifested by a very slow kinetics of displacement of Tb3+ ion by competing cations (Li+, Na+, K+).  相似文献   

17.
Trivalent lanthanide ions and Cd2+ were found to mimic effectively the stimulatory action of Ca2+ on rabbit muscle phosphorylase kinase. In the range of concentrations tested, Cd2+ and lanthanides (Tb3+, Gd3+, Pr3+, Ce3+) could substitute for Ca2+ in activating the enzyme to about 60% and 70% respectively of the maximal level seen with Ca2+, at pH 8.2. The effect induced by Cd2+ was biphasic (stimulation followed by inhibition with increasing metal cation concentration). Similar results were obtained at pH 6.8. Cd2+ and Tb3+ were also able to replace Ca2+ required for the stimulation of phosphorylase kinase activity at pH 8.2 by exogenous calmodulin. Maximal stimulation induced by calmodulin in presence of Cd2+ was significantly higher than that in presence of Ca2+ or Tb3+.  相似文献   

18.
C L Wang  P C Leavis  J Gergely 《Biochemistry》1984,23(26):6410-6415
The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.  相似文献   

19.
The luminescent isomorphous Ca2+ analogue, Tb3+, can be bound in the 12-amino acid metal binding sites of proteins of the EF hand family, and its luminescence can be enhanced by energy transfer from a nearby aromatic amino acid. Tb3+ can be used as a sensitive luminescent probe of the structure and function of these proteins. The effect of changing the molecular environment around Tb3+ on its luminescence was studied using native Cod III parvalbumin and site-directed mutants of both oncomodulin and calmodulin. Titrations of these proteins showed stoichiometries of fill corresponding to the number of Ca2+ binding loops present. Tryptophan in binding loop position 7 best enhanced Tb3+ luminescence in the oncomodulin mutant Y57W, as well as VU-9 (F99W) and VU-32 (T26W) calmodulin. Excitation spectra of Y57F, F102W, Y65W oncomodulin, and Cod III parvalbumin revealed that the principal Tb3+ luminescence donor residues were phenylalanine or tyrosine located in position 7 of a loop, despite the presence of other nearby donors, including tryptophan. Spectra also revealed conformational differences between the Ca2+- and Tb(3+)-bound forms. An alternate binding loop, based on Tb3+ binding to model peptides, was inserted into the CD loop of oncomodulin by cassette mutagenesis. The order of fill of Tb3+ in this protein reversed, with the mutated loop binding Tb3+ first. This indicates a much higher affinity for the consensus-based mutant loop. The mutant loop inserted into oncomodulin had 32 times more Tb3+ luminescence than the identical synthetic peptide, despite having the same donor tryptophan and metal binding ligands. In this paper, a ranking of sensitivity of luminescence of bound Tb3+ is made among this subset of calcium binding proteins. This ranking is interpreted in light of the structural differences affecting Tb3+ luminescence enhancement intensity. The mechanism of energy transfer from an aromatic amino acid to Tb3+ is consistent with a short-range process involving the donor triplet state as described by Dexter (Dexter, D. L. (1953) J. Chem. Phys. 21, 836). This cautions against the use of the F?rster equation in approximating distances in these systems.  相似文献   

20.
Parvalbumin (PV) and the homologous protein oncomodulin (OM) contain three EF-hand motifs, but the first site (AB) cannot bind Ca2+. Here we aimed to recreate the putative ancestral proteins [D19-28E]PV and [D19-28E]OM by replacing the 10-residue-long nonfunctional loop in the AB site by a 12-residue canonical loop. To create an optical conformational probe we also expressed the homologs with a F102W replacement. Unexpectedly, in none of the proteins did the mutation reactivate the AB site. The AB-remodeled parvalbumins bind two Ca2+ ions with strong positive cooperativity (nH = 2) and moderate affinity ([Ca2+]0.5 = 2 microM), compared with [Ca2+]0.5 = 37 nM and nH = 1 for the wild-type protein. Increasing Mg2+ concentrations changed nH from 2 to 0.65, but without modification of the [Ca2+]0. 5-value. CD revealed that the Ca2+ and Mg2+ forms of the remodeled parvalbumins lost one-third of their alpha helix content compared with the Ca2+ form of wild-type parvalbumin. However, the microenvironment of single Trp residues in the hydrophobic cores, monitored using intrinsic fluorescence and difference optical density, is the same. The metal-free remodeled parvalbumins possess unfolded conformations. The AB-remodeled oncomodulins also bind two Ca2+ with [Ca2+]0.5 = 43 microM and nH = 1.45. Mg2+ does not affect Ca2+ binding. Again the Ca2+ forms display two-thirds of the alpha-helical content in the wild-type, while their core is still strongly hydrophobic as monitored by Trp and Tyr fluorescence. The metal-free oncomodulins are partially unfolded and seem not to possess a hydrophobic core. Our data indicate that AB-remodeled parvalbumin has the potential to regulate cell functions, whereas it is unlikely that [D19-28E]OM can play a regulatory role in vivo. The predicted evolution of the AB site from a canonical to an abortive EF-hand may have been dictated by the need for stronger interaction with Mg2+ and Ca2+, and a high conformational stability of the metal-free forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号