首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brown-adipose-tissue mitochondria isolated from golden hamsters were found to contain more CoA per mg protein than rat brown-fat mitochondria, and after incubation with erucoyl-carnitine, a higher free CoA level remained, than in rat mitochondria. In accordance with the suggestion (Alexson et al. (1985) Biochim. biophys. Acta 834, 149-158) that the inhibitory effect of erucoyl-carnitine on brown-fat mitochondrial respiration is entirely due to CoA sequestration, hamster mitochondria (with more CoA) were less sensitive to erucoyl inhibition than were rat mitochondria. Thus, increased mitochondrial CoA levels may augment the ability of animals to withstand the detrimental effects of a high erucoyl ester content of the diet.  相似文献   

2.
Interaction of various compounds with the 14CO2 production from [1-14C]-labelled branched-chain 2-oxo acids was studied in intact rat quadriceps muscle and liver mitochrondria. In the absence of carnitine, CoA esters of short-chain and branched-chain fatty acids, CoA and acetyl-L-carnitine stimulated oxidation of 4-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate in muscle mitochondria. Octanoyl-L-carnitine inhibited oxidation of the latter, but stimulated that of the former substrate. Isovaleryl-L-carnitine was inhibitory with both substrates. Carnitine stimulates markedly 3-methyl-2-oxobutanoate oxidation in liver mitochondria at substrate concentrations higher than 0.1 mM, in contrast to 4-methyl-2-oxopentanoate oxidation. In the presence of carnitine, 3-methyl-2-oxobutanoate oxidation was inhibited in muscle and liver mitochondria by octanoate, octanoyl-L-carnitine and isovaleryl-L-carnitine. The latter ester and octanoyl-D-carnitine inhibited also 4-methyl-2-oxopentanoate oxidation in muscle mitochondria. Branched-chain 2-oxo acids inhibited mutaly their oxidation, except that 3-methyl-2-oxobutanoate did not inhibit 4-methyl-2-oxopentanoate oxidation in liver mitochondria. Their degradation products, isovalerate, 3-methylcrotonate, isobutyrate and 3-hydroxyisobutyrate inhibited to a different extent 2-oxo acid oxidation in liver mitochondria. The effect of CoA esters was studied in permeabilized and with cofactors reinforced mitochondria. Acetyl-CoA and isovaleryl-CoA inhibited only 3-methyl-2-oxobutanoate oxidation in muscle mitochondria. Octanoyl-CoA inhibited oxidation of both 2-oxo acids in muscle and 4-methyl-2-oxopentanoate oxidation in liver mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Respiration-linked oxidation of 3-hydroxybutyryl-CoA, crotonyl-CoA and saturated fatty acyl (C4, C8 and C14)-CoA esters was studied in different mitochondrial preparations. Oxidation of acyl-CoA esters was poor in intact mitochondria; however, it was significant, as well as, NAD+ and CoA-dependent in gently and in vigorously sonicated mitochondria. The respiration-linked oxidation of crotonyl-CoA and 3-hydroxybutyryl-CoA proceeded at much higher rates (over 700%) in gently disrupted mitochondria than in completely disrupted mitochondria. The redox dye-linked oxidation of crotonyl-CoA (with inhibited respiratory chain) was also higher in gently disrupted mitochondria (149%) than in disrupted ones. During the respiration-linked oxidation of 3-hydroxybutyryl-CoA the steady-state NADH concentrations in the reaction chamber were determined, and found to be 8 microM in gently sonicated and 15 microM in completely sonicated mitochondria in spite of the observation that the gently sonicated mitochondria oxidized the 3-hydroxybutyryl-CoA much faster than the completely sonicated mitochondria. The NAD(+)-dependence of 3-hydroxybutyryl-CoA oxidation showed that a much smaller NAD+ concentration was enough to half-saturate the reaction in gently disrupted mitochondria than in completely disrupted ones. Thus, these observations indicate the positive kinetic consequence of organization of beta-oxidation enzymes in situ. Respiration-linked oxidation of butyryl-, octanoyl- and palmitoyl-CoA was also studied and these CoA intermediates were oxidized at approx. 50% of the rate of crotonyl- and 3-hydroxybutyryl-CoA in the gently disrupted mitochondria. In vigorously disrupted mitochondria the oxidation rate of these saturated acyl-CoA intermediates was hardly detectable indicating that the connection between the acyl-CoA dehydrogenase and the respiratory chain had been disrupted.  相似文献   

4.
The oxidation of 14C-labelled branched-chain alpha-keto acids corresponding to the branched-chain amino acids valine, isoleucine and leucine has been studied in isolated mitochondria from heart, liver and skeletal muscle. 1. Heart and liver mitochondria have similar capacities to oxidize these alpha-keto acids based on protein content. Skeletal muscle mitochondria also show significant activity. 2. Half maximum rates are obtained with approximately 0.1 mM of the alpha-keto acids under optimal conditions. Added NAD and CoA had no effect on the oxidation rate, showing that endogenous mitochondrial NAD and CoA are required for the oxidation. 3. Addition of carnitine esters of fatty acids (C6--C16), succinate, pyruvate, or alpha-ketoglutarate inhibited the oxidation of the branched chain alpha-keto acids, especially in a high-energy state (no ADP added). In heart mitochondria the addition of AD (low-energy state) decreased the inhibitory effects of acylcarnitines of medium chain length or of pyruvate, and abolished the inhibitory effect of succinate. It is suggested that the oxidation rate is regulated mainly by the redox state of the mitochondria under the conditions used. 4. The results are discussed in relation to the regulation of branched-chain amino acid metabolism in the body.  相似文献   

5.
The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide.  相似文献   

6.
Propionic acidemia occasionally produces a toxic encephalopathy resembling Reye syndrome, indicating disruption of mitochondrial metabolism. Understanding the mitochondrial effect of propionate might clarify the pathophysiology. Liver mitochondria are inhibited by propionate (5 mM) while muscle mitochondria are not. Preincubation is required to inhibit liver mitochondria, suggesting that propionate is metabolized to propionyl CoA. Liver and skeletal muscle mitochondria incubated with [1-14C]propionate contain similar quantities of matrix isotope and release comparable [14C]CO2. However, only liver mitochondria accumulated significant propionyl CoA, which was largely (68%) synthesized from propionate. Carnitine reduced the level of liver matrix propionyl CoA. Inhibition of respiratory control ratios by propionate correlated with propionyl CoA levels. These results support the hypothesis that acyl CoA esters are toxic and that carnitine exerts its protective effect by converting acyl CoA esters to acylcarnitine esters.  相似文献   

7.
1. The synthesis of pent-4-enoyl-l-carnitine, cyclopropanecarbonyl-l-carnitine and cyclobutanecarbonyl-l-carnitine is described. 2. Pent-4-enoate strongly inhibits palmitoyl-l-carnitine oxidation in coupled but not in uncoupled mitochondria. Pent-4-enoyl-l-carnitine strongly inhibits palmitoyl-l-carnitine oxidation in uncoupled mitochondria. Prior intramitochondrial formation of pent-4-enoyl-CoA is therefore necessary for inhibition. 3. There was a small self-limiting pulse of oxidation of pent-4-enoyl-l-carnitine during which the ability to inhibit the oxidation of subsequently added palmitoyl-l-carnitine developed. 4. Pent-4-enoate and pent-4-enoyl-l-carnitine are equally effective inhibitors of the oxidation of all even-chain acylcarnitines of chain length C(4)-C(16). Pent-4-enoyl-l-carnitine also inhibits the oxidation of pyruvate and of 2-oxoglutarate. 5. Pent-4-enoate strongly inhibits the oxidation of palmitate but not that of octanoate. This is presumably due to competition between octanoate and pent-4-enoate for medium-chain acyl-CoA ligase. 6. There was less inhibition of the oxidation of pyruvate by pent-4-enoyl-l-carnitine, and of palmitoyl-l-carnitine by cyclopropanecarbonyl-l-carnitine, after pre-incubation with 10mm-arsenate. This suggests that these inhibitions were caused either by depletion of free CoA or by increase of acyl-CoA concentrations, since arsenate deacylates intramitochondrial acyl-CoA. There was little effect on the inhibition of palmitoyl-l-carnitine oxidation by pent-4-enoyl-l-carnitine. 7. Penta-2,4-dienoate strongly inhibited palmitoyl-l-carnitine oxidation in coupled mitochondria; acrylate only inhibited slightly. 8. Pent-4-enoate (0.1mm) caused a rapid and almost complete decrease in free CoA and a large increase in acid-soluble acyl-CoA when incubated with coupled mitochondria. Cyclopropanecarboxylate caused a similar decrease in CoA, with an equivalent rise in acid-soluble acyl-CoA concentrations. n-Pentanoate caused extensive lowering of CoA and a large increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. Octanoate caused a 50% lowering of CoA and an increase in acid-soluble acyl-CoA and acetyl-CoA concentrations. 9. Cyclopropanecarboxylate and n-pentanoate were less potent inhibitors of palmitate oxidation than was pent-4-enoate. 10. It is concluded that pent-4-enoate causes a specific inhibition of beta-oxidation after the formation intramitochondrially of its metabolites.  相似文献   

8.
The acute effect of the hypolipidemic agent bezafibrate on fatty acid oxidation was studied in rat hepatocytes and mitochondria. Bezafibrate caused a concentration-related inhibition of oleate oxidation in liver cells. In mitochondria bezafibrate inhibited the oxidation of palmitoyl CoA but had no effect on palmitoylcarnitine oxidation, suggesting the site of inhibition was the formation of the carnitine derivative. Bezafibrate and bezafibroyl CoA inhibited the overt carnitine palmitoyltransferase (I) in rat liver mitochondria with comparable potency but with distinct kinetics. The inhibition caused by bezafibrate was not prevented by omission of Mg++-ATP from the assay mixture, indicating activation of bezafibrate to bezafibroyl CoA was not required for inhibition. The data demonstrate that bezafibrate, like several other peroxisome proliferating agents, inhibits mitochondrial fatty acid oxidation in rat liver. The inhibition may be relevant to the mechanism of peroxisome proliferation.  相似文献   

9.
The p-coumaric acid, a phenolic acid, occurs in several plant species and, consequently, in many foods and beverages of vegetable origin. Its antioxidant activity is well documented, but there is also a single report about an inhibitory action on the monocarboxylate carrier, which operates in the plasma and mitochondrial membranes. The latter observation suggests that p-coumaric acid could be able to inhibit gluconeogenesis and related parameters. The present investigation was planned to test this hypothesis in the isolated and hemoglobin-free perfused rat liver. Transformation of lactate and alanine into glucose (gluconeogenesis) in the liver was inhibited by p-coumaric acid (IC50 values of 92.5 and 75.6 microM, respectively). Transformation of fructose into glucose was inhibited to a considerably lower degree (maximally 28%). The oxygen uptake increase accompanying gluconeogenesis from lactate was also inhibited. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 160.1 microM); no such effect was observed in freeze-thawing disrupted mitochondria. Glucose 6-phosphatase and fructose 1,6-bisphosphatase were not inhibited. In isolated intact mitochondria, p-coumaric acid inhibited respiration dependent on pyruvate oxidation but was ineffective on respiration driven by succinate and beta-hydroxybutyrate. It can be concluded that inhibition of pyruvate transport into the mitochondria is the most prominent primary effect of p-coumaric acid and also the main cause for gluconeogenesis inhibition. The existence of additional actions of p-coumaric acid, such as enzyme inhibitions and interference with regulatory mechanisms, cannot be excluded.  相似文献   

10.
The effect of phloretin on respiration by isolated mitochondria and submitochondrial particles was studied. In submitochondrial particles, both NADH- and succinate-dependent respiration was inhibited by phloretin. 50% maximum inhibition was reached at phloretin concentrations of 0.1 mM (NADH oxidation) and 0.7 mM (succinate oxidation). In isolated mitochondria, phloretin inhibited glutamate oxidation in both State 3 and State 4; 50% maximum inhibition occurred at about 30 microM. Succinate oxidation is inhibited in State 3 by phloretin, inhibition being half its maximum value at 0.5 mM, but in State 4 it is stimulated about 2-fold by phloretin at a concentration of 0.6 mM. Ascorbate oxidation is stimulated in both State 3 and State 4, maximum stimulation being equal to that obtained with an uncoupler of oxidative phosphorylation. Under all circumstances, phloretin lowered the transmembrane electrical potential difference in isolated mitochondria. These results are discussed in terms of mosaic non-equilibrium thermodynamics. We conclude that phloretin is both an uncoupler and an inhibitor of oxidative phosphorylation.  相似文献   

11.
Lipid peroxidation in rat brain mitochondria was induced by NADH in the presence of ADP and FeCl3. CV-2619 inhibited the lipid peroxidation in a concentration-dependent manner; the concentration giving 50% inhibition (IC50) was 84 microM. In addition, the inhibitory effect of CV-2619 was strongly enhanced by adding substrates of mitochondrial respiration; when succinate, glutamate, or succinate plus glutamate was added, the IC50 of CV-2619 was changed to 1.1, 10, or 0.5 microM, respectively. Metabolites of CV-2619 also inhibited the lipid peroxidation. The inhibitory effect of CV-2619 on mitochondrial lipid peroxidation disappeared when TTFA, an inhibitor of complex II in mitochondrial respiratory chain, was added. The results indicate that in mitochondria CV-2619 is changed to its reduced form which inhibits lipid peroxidation.  相似文献   

12.
Vasopressin inhibits fatty acid oxidation and stimulates fatty acid esterification, glycogenolysis, and lactate production in hepatocytes from fed rats. In cells from fasted rats, the effect of the hormone on palmitate oxidation was absent, while gluconeogenesis was stimulated. The inhibitory action of vasopressin on palmitate oxidation was not due to the increased lactate production. Neither was it correlated to glycogen content or stimulation of glycogenolysis, which were restored earlier than the vasopressin effect on palmitate oxidation when previously fasted rats were refed a carbohydrate diet. The level of malonyl-CoA was moderately increased by vasopressin. Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA carnitine, glycerophosphate, ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid, and varying amounts of calcium. The oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1 to 10 microM. Simultaneously, palmitate esterification was stimulated. This effect of calcium was observed also with mitochondria from fasted rats and with octanoate as well as palmitate as the substrate. Carnitine acylation was not affected by calcium. The possibility that the observed effects of calcium on mitochondrial fatty acid utilization is part of the mechanism of action of vasopressin on hepatocyte fatty acid metabolism is discussed.  相似文献   

13.
Influence of valproic acid on hepatic carbohydrate and lipid metabolism   总被引:14,自引:0,他引:14  
Valproic acid (dipropylacetic acid), an antiepileptic agent known to be hepatotoxic in some patients, caused inhibition of lactate gluconeogenesis, fatty acid oxidation, and fatty acid synthesis by isolated hepatocytes. The latter process was the most sensitive to valproic acid, 50% inhibition occurring at ca. 125 microM with cells from meal-fed female rats. The medium-chain acyl-CoA ester fraction was increased whereas coenzyme A (CoA), acetyl-CoA, and the long chain acyl-CoA fractions were decreased by valproic acid. The increase in the medium chain acyl-CoA fraction was found by high-pressure liquid chromatography to be due to the accumulation of valproyl-CoA plus an apparent CoAester metabolite of valproyl-CoA. Salicylate inhibited valproyl-CoA formation and partially protected against valproic acid inhibition of hepatic metabolic processes. Octanoate had a similar protective effect, suggesting that activation of valproic acid in the mitosol is required for its inhibitory effects. It is proposed that either valproyl-CoA itself or the sequestration of CoA causes inhibition of metabolic processes. Valproyl-CoA formation also appears to explain valproic acid inhibition of gluconeogenesis by isolated kidney tubules. No evidence was found for the accumulation of valproyl-CoA in brain tissue, suggesting that the effects of valproic acid in the central nervous system are independent of the formation of this metabolite.  相似文献   

14.
Sodium benzoate inhibited PC and octanoic acid-mediated State 3 respiration rates by 39 and 29%, respectively, at 0.5 mM in isolated rat liver mitochondria. At 2 mM, benzoate did not affect State 3 respiration rates with either succinate or malate plus glutamate, indicating that it did not act as an uncoupler. The oxidation of palmitate and octanoate was inhibited by 39 and 54% at 2 mM benzoate in liver homogenates. Benzoate, at 10 mmol/kg caused significant decreases in the levels of hepatic ATP, CoA, and acetyl-CoA. Administration of sodium benzoate to rats caused a dose-dependent increase in hepatic ammonia levels. However, the inhibitory effect of benzoate on fatty acid oxidation is not mediated through ammonia since ammonium chloride, at 1 mM, did not inhibit PC or octanoate oxidation in mitochondria or their oxidation in liver homogenate. Our results warrant a reevaluation of the use of sodium benzoate in the treatment of hyperammonemia.  相似文献   

15.
Palmitoyl CoA inhibited EDTA-ATPase of heavy meromyosin (HMM) prepared from rabbit skeletal muscle. The concentration for half maximum inhibition of EDTA-ATPase was about 18 microM. Myristoyl CoA, the other long chain fatty acyl CoA, also inhibited EDTA-HMM ATPase, but CoA and short chain CoA thioesters, such as butyryl CoA, acetoacetyl CoA and acetyl CoA, at 40 microM hardly inhibited EDTA-ATPase. Less than 20% inhibition of EDTA-HMM ATPase was obtained with Na-palmitate and Na-myristate at 40 microM, whereas about 90% inhibition of the enzyme occurred in the presence of 40 microM palmitoyl CoA and myristoyl CoA. Palmitoyl carnitine, as well as carnitine, failed to inhibit EDTA-HMM-ATPase. The inhibition of palmitoyl CoA of EDTA-ATPase was reversed by bovine serum albumin and spermine. Mg2+-HMM ATPase activity was enhanced by palmitoyl CoA at 2, 5, and 10 microM. About a 25% increase in Mg2+-HMM ATPase activity was obtained at 5 and 10 microM. At higher concentrations than 20 microM, the enzyme was inhibited by palmitoyl CoA and the degree of inhibition was related to the concentration of the CoA thioester. At 80 microM, the activity was about 15% of the maximum value. The efficacy of myristoyl CoA on Mg2+-ATPase was almost the same as that of palmitoyl CoA. Mg2+-ATPase activity was not enhanced by CoA, butyryl CoA, acetoacetyl CoA, Na-myristate, Na-palmitate, palmitoyl carnitine, or carnitine at 10 microM, and was hardly reduced by these substances at 40 microM. Serum albumin and spermine also canceled, to some extent, these effects of palmitoyl CoA on Mg2+-ATPase.  相似文献   

16.
Respiration-linked oxidation of 3-hydroxybutyryl-CoA, crotonyl-CoA and saturated fatty acyl (C4, C8 and C14)-CoA esters was studied in different mitochondrial preparations. Oxidation of acyl-CoA esters was poor in intact mitochondria; however, it was significant, as well as, NAD+ and CoA-dependent in gently and in vigorously sonicated mitochondria. The respiration-linked oxidation of crotonyl-CoA and 3-hydroxybutyryl-CoA proceeded at much higher rates (over 700%) in gently disrupted mitochondria than in completely disrupted mitochondria. The redox dye-linked oxidation of crotonyl-CoA (with inhibited respiratory chain) was also higher in gently disrupted mitochondria (149%) than in disrupted ones. During the respiration-linked oxidation of 3-hydroxybutyryl-CoA the steady-state NADH concentrations in the reaction chamber were determined, and found to be 8 μM in gently sonicated and 15 μM in completely sonicated mitochondria in spite of the observation that the gently sonicated mitochondria oxidized the 3-hydroxybutyryl-CoA much faster than the completely sonicated mitochondria. The NAD+-dependence of 3-hydroxybutyryl-CoA oxidation showed that a much smaller NAD+ concentration was enough to half-saturate the reaction in gently disrupted mitochondria than in completely disrupted ones. Thus, these observations indicate the positive kinetic consequence of organization of β-oxidation enzyme in situ. Respiration-linked oxidation of bytyryl-, oxtanoyl- and palmitoyl-CoA was also studied and these CoA intermediates were oxidized at approx. 50% of the rate of crotonyl- and 3-hydroxybutyryl-CoA in the gently disrupted mitochondria. In vigorously disrupted mitochondria the oxidation rate of these saturated acyl-CoA intermediates was hardly detectable indicating that the connection between the acyl-CoA dehydrogenase and the respiratory chain had been disrupted.  相似文献   

17.
Long-chain unsaturated fatty acids and fatty acyl CoA derivatives activated (Na++K+)-ATPase at suboptimal, but not optimal, ATP concentrations. Activation was obtained within a narrow range of fatty acid concentrations; higher acid levels inhibited the enzyme. The various CoA esters, however, activated with K0.5 values in the range of 0.15-10 microM; and with no inhibitory effects at concentrations up to 100 microM. Palmitoyl CoA, binding reversibly to a regulatory site, reduced K0.5 of ATP from 0.37 mM to 0.17 mM; and changed the Hill coefficient of the substrate-velocity curve from 0.86 to 0.63. These compounds may be physiological regulators that desensitize the function of this enzyme to diminishing ATP levels.  相似文献   

18.
The effects of the arylidene-cyclopentenedione radiosensitizers, KIH-200, 201 and 202 on ATP synthesis in mitochondria were examined. In spite of the close similarity of their chemical structure to that of the most potent known weakly acidic uncoupler, SF 6847, they did not show any uncoupling activity at concentrations of up to 50 microM. However, these three compounds were found to have very potent inhibitory effects on Pi-transport into mitochondria, all causing 50% inhibition (I50%) at about 7 microM. Thus they are much more potent than the commonly used Pi-transport inhibitors N-ethylmaleimide (I50% = about 40 microM), and mersalyl (I50% = about 30 microM). They may act as SH-reagents, and inhibit Pi-transport by modifying an SH-group(s) in the Pi-transporter.  相似文献   

19.
The effects of palmitic acid (PA), stearic acid (SA) and oleic acid (OA), and their respective CoA esters, PA-CoA, SA-CoA and OA-CoA, on the activities of cyclooxygenase (COX)-1 and -2 were examined. Ten units of purified COX-1 or -2 were preincubated with drugs in the presence of hematin (0.1 microM) and phenol (2 mM) as cofactors for 10 min at 37 degrees C, and then incubated with 100 microM arachidonic acid for 2 min at 37 degrees C. The amounts of prostaglandins formed were measured by HPLC. PA, SA and OA had no effect on the COX-1 and -2 activities, but their respective CoA esters, PA-CoA, SA-CoA and OA-CoA, suppressed COX-1 activity with no significant effect on COX-2 activity. The inhibitory effect of SA-CoA was much stronger than that of PA-CoA and OA-CoA. These results suggest that SA has the potential to inhibit COX-1 activity, but not COX-2 activity, in the form of their CoA ester.  相似文献   

20.
Trifluoperazine inhibits ADP-stimulated respiration in mung bean (Phaseolus aureus) mitochondria when either NADH, malate, or succinate serve as substrates (IC50 values of 56, 59, and 55 microM, respectively). Succinate:ferricyanide oxidoreductase activity of these mitochondria was inhibited to a similar extent. The oxidation of ascorbate/TMPD was also sensitive to the phenothiazine (IC50 = 65 microM). Oxidation of exogenous NADH was inhibited by trifluoperazine even in the presence of excess EGTA [ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid] (IC50 = 60 microM), indicating an interaction with the electron transport chain rather than with the dehydrogenase itself. In contrast, substrate oxidation in Voodoo lily (Sauromatum guttatum) mitochondria was relatively insensitive to the phenothiazine. The results suggest the bc1 complex to be a major site of inhibition. The membrane potential of energized mung bean mitochondria was depressed by micromolar concentrations of trifluoperazine, suggesting an effect on the proton-pumping capability of these mitochondria. Membrane-bound and soluble ATPases were equally sensitive to trifluoperazine (IC50 of 28 microM for both), implying the site of inhibition to be on the F1. Inhibition of the soluble ATPase was not affected by EGTA, CaCl2, or exogenous calmodulin. Trifluoperazine inhibition of electron transport and phosphorylation in plant mitochondria appears to be due to an interaction with a protein of the organelle that is not calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号