首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Complex alleles of the acid beta-glucosidase gene in Gaucher disease.   总被引:12,自引:5,他引:7       下载免费PDF全文
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and seven point mutations in the acid beta-glucosidase (beta-Glc) gene have been identified. By means of sequence-specific oligonucleotides (SSO), mutation 6433C has been detected homozygously in neuronopathic type 2 (acute) and type 3 (subacute) patients, as well as in children with severe visceral involvement who are apparently free of neuronopathic disease. To investigate the molecular basis for this puzzling finding, amplified beta-Glc cDNAs from 6433C homozygous type 2 and type 3 Gaucher disease patients were cloned and sequenced. The Swedish type 3 Gaucher disease patient was truly homozygous for alleles only containing the 6433C mutation. In comparison, the type 2 patient contained a singly mutated 6433C allele and a "complex" allele with multiple discrete point mutations (6433C, 6468C, and 6482C). Each of the mutations in the complex allele also was present in the beta-Glc pseudogene. SSO hybridization of 6433C homozygotes revealed that both type 2 patients contained additional mutations in one allele, whereas the 6433C alone was detected in both type 3 and in young severe type 1 Gaucher disease patients. These results suggest that the presence of the complex allele influences the severity of neuronopathic disease in 6433C homozygotes and reveal the central role played by the pseudogene in the formation of mutant alleles of the beta-Glc gene. Analysis of additional cDNA clones also identified two new alleles in a type 3 patient, emphasizing the molecular heterogeneity of neuronopathic Gaucher disease.  相似文献   

3.
Two sepharose-bound 1-deoxynojirimycin N-alkyl derivatives, N-(9-carboxynonyl)- and N-(11-carboxyundecyl)-deoxynojirimycin, were used for the affinity purification of acid beta-glucosidase (beta-Glc) from normal and type-1 Ashkenazi Jewish Gaucher disease (AJGD) sources. The capacities of these nondegradable inhibitor supports were 0.5 and 0.75 mg of normal beta-Glc/ml of settled gel, respectively. The purified normal enzyme (14-18% yield) had a specific activity of 1.6 X 10(6) nmol/h/mg protein and was homogeneous as evidenced by a single protein species of Mr = 67,000 on sodium dodecylsulfate-polyacrylamide gel electrophoresis and reverse phase high-performance liquid chromatography (HPLC). Microsequencing demonstrated a single N terminus, and the sequence of the first 22 N-terminal amino acids was colinear with that predicted from the beta-Glc cDNA. Amino acid composition analyses of beta-Glc revealed a high content (35%) of hydrophobic amino acids. The N-decyl-deoxynojirimycin support facilitated the purification of the residual enzyme from type-1 AJGD spleen to about 7,500-fold in four steps with a yield of about 11%. These new affinity supports provided improved stability, capacity and/or specificity compared to other affinity or HPLC methods for purifying this lysosomal glycosidase.  相似文献   

4.
Immunoblots were prepared using extracts of fibroblasts derived from five controls and from four unrelated patients with type I, three with type II, and two with type III Gaucher disease. Five monoclonal antisera and two rabbit sera, crude and affinity purified, were utilized to detect antigen transferred to nitrocellulose paper. Only a band of 63,000 molecular weight (Mr) was consistently detected. We found no 56-K band either in normal or in Gaucher disease fibroblast extracts. Thus, using a variety of antisera, we are unable to verify the claim that the types of Gaucher disease can be differentiated from one another by immunoblotting.  相似文献   

5.
Gaucher disease (GD), which results from mutations in the human acid beta-glucosidase (beta-Glc) gene, was used as a model system to compare the utility of three methods capable of detecting single base substitutions. PCR-amplified beta-Glc exon 9 sequences of GD patients were screened for single base mutations by GC-clamped denaturing gradient gel electrophoresis (DGGE) and RNase A cleavage of RNA-DNA heteroduplexes, and by chemical (hydroxylamine/osmium tetroxide) cleavage of dsDNA heteroduplexes. PCR products showing abnormal behaviour were cloned and sequenced. Three new point mutations were detected by this strategy. A G to C (Asp409 to His409) substitution was present in two Type 1 and one Type 3 GD patients; an A to T transversion (Asp409 to Val409) was detected in only a single Type 3 individual, and a G to T mutation (Val394 to Leu394) was present in one Type 1 and one Type 3 patient. GD thus exhibits extensive molecular heterogeneity, with at least five single base mutations in beta-Glc exon 9. In every case verified by ASO hybridization, DGGE had correctly identified the presence of the three new mutations, as well as the two previously described exon 9 mutations. In comparison, although RNase A and the chemical method were both able to detect some of these mutations, neither method reproducibly detected all of them. Additionally, DGGE was the only method that was able to reliably determine whether a given mutation was present homozygously or heterozygously. These results suggest that GC-clamped DGGE may be a more reliable and informative screening method for point mutation detection.  相似文献   

6.
Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts   总被引:5,自引:0,他引:5  
The biosynthesis and maturation of glucocerebrosidase were studied in fibroblasts from patients with the neurological and non-neurological forms of Gaucher disease and in control cells. In control fibroblasts the precursor of glucocerebrosidase (62-63 kDa), observed after a short pulse with [35S]methionine, was converted during the chase period to a 66-kDa intermediate form and, finally, to the 59-kDa mature protein. In fibroblasts from patients with the non-neurological phenotype of Gaucher disease (type 1) the same biosynthetic forms were seen as in control fibroblasts. These biosynthetic forms correspond to the three-banded pattern seen in control and Gaucher type 1 fibroblast extracts analysed by the immunoblotting procedure, or after electrophoresis and fluorography of extracts of such fibroblasts cultured for 5 days with [14C]leucine. The 59-kDa protein seen in type 1 fibroblasts was unstable and disappeared after a prolonged chase; this disappearance was not observed when the cells were grown in the presence of leupeptin. In fibroblasts from patients with the neurological forms of Gaucher disease (types 2 and 3) the 62.5-kDa precursor of glucocerebrosidase was present in near-normal amounts after a short pulse, but the 59-kDa form was not detected even when cells were cultured with leupeptin. These results are in accordance with the absence of the 59-kDa band in immunoblots of types 2 and 3 fibroblast extracts. Culturing of type 1, type 2 and type 3 Gaucher fibroblasts in the presence of leupeptin led to an increase in the activity of glucocerebrosidase.  相似文献   

7.
Summary Glucocerebroside -glucosidase (glucocerebrosidase) activity was assayed from cultured fibroblasts of normal individuals, and patients with type 1 (non-neuropathic), type 2 (acute neuropathic), and type 3 (subacute neuropathic) form of Gaucher disease. Residual glucocerebrosidase activity of patients was 8.9 to 17.4% of normal controls, and there was no clear correlation between the level of residual enzyme activity and the different clinical subtypes of the disease. When membrane-bound glucocerebrosidase activity was assayed in the presence of crude brain lipid extracts or purified phosphatidylserine, enzyme from both the normal and type 1 Gaucher fibroblasts was stimulated dramatically (35–60% by crude extracts, 85–90% by phosphatidylserine). This stimulation was not observed with fibroblast glucocerebrosidase of an infantile type 2 and two juvenile type 3 Gaucher patients. The presence of inhibitors of glucocerebrosidase in these type 2 and type 3 Gaucher cells was not detected. Contrary to the mutant enzyme from these Gaucher fibroblasts, glucocerebrosidase from fibroblasts of two adult type 3 Gaucher patients with cerebral involvement was stimulated substantially (72–85%) by phosphatidylserine. When membrane-bound glucocerebrosidase from fibroblasts of the infantile type 2 and juvenile type 3 patients was solubilized with sodium cholate (1% w/v) and delipidated, the phospholipid stimulation of enzyme activity was restored. These findings suggest that considerable clinical and biochemical heterogeneity exists among patients with neuropathic Gaucher disease and that phosphatidylserine activation cannot be used as a reliable indicator in predicting future onset of neurodegeneration in Gaucher patients. The possibility of an aberrant binding of mutant glucocerebrosidase to the lysosomal membrane in juvenile type 3 form of Gaucher disease is discussed.  相似文献   

8.
Two nonenzymic activator proteins shown previously to strongly stimulate enzymic sphingomyelin degradation in vitro were purified from human Gaucher type 1 and control spleen. Activator A1 (molecular mass 6,500 Da) had affinity for ConA-Sepharose, while activator A2 (molecular mass 3,500 Da) did not. Monospecific antibodies to each activator protein were prepared in rabbits by immunization with protein purified from type 1 Gaucher spleen. A1 and A2 activators from Gaucher type 1 spleen were shown to be immunochemically identical to A1 and A2 activators from control spleen. However, A1 and A2 activators, whether isolated from Gaucher type 1 or control spleen, were shown to be distinct proteins. Immunochemical examination of all collected fractions during the purification revealed the existence of a third activator (molecular mass 6,000 Da), which was antigenically identical to A1 activator but had no affinity for ConA-Sepharose. The two forms of A1 activator showed similar mobility on immunoelectrophoresis differing from that of A2 activator. Fibroblast extracts from controls and patients with different variants of Gaucher disease were investigated using immunodiffusion against antisera to A1 or A2 activator. In contrast to normal and Gaucher (types 1, 2 and 3) cell extracts, those of a Gaucher patient with normal glucosylceramidase activity had no visible precipitin line towards the antiserum against the two forms of A1 activator. The lack of crossreacting material to antibodies against A1 activator was confirmed by radial immunodiffusion and rocket immunoelectrophoresis. A1 activator stimulated the basal glucosylceramidase activity 5-6 fold in fibroblasts from this patient, whereas the normal effect was only a 1.2-1.5-fold stimulation. The immunological results together with the biochemical data provide evidence for the lack of an activator protein in a variant form of human Gaucher disease for the first time.  相似文献   

9.
Summary A 444leucine to proline mutation detected by a NciI polymorphism in the human glucocerebrosidase gene was studied to investigate the correlation of the three clinical phenotypes of Gaucher disease with this mutation in 11 Japanese patients with Gaucher disease (type I, 8 patients; type II, 1 patient; type III, 2 patients) and to determine the feasibility of the use of genomic probe DNA for carrier detection and prenatal diagnosis in 8 Japanese families with Gaucher disease and agreeable to family study (type I, 6 families; type III, 2 families). The homoallelic 444leucine to proline mutation was found only in patients with type I disease. Of the 8 type I patients, 5 had the homoallelic mutation and 2 had one mutant allele. One patient with type II disease did not have this mutant allele. Of the 2 type III patients, one had a single mutant allele whereas the other exhibited no mutation of this kind. These results suggest that the 444leucine to proline mutation is very common in the type I (non-neuronopathic form) disease and is not tightly associated only with neuronopathic types of Gaucher disease in Japanese patients. These findings seem to conflict with others showing that this mutation is partially responsible for the occurrence of neuronopathic Gaucher disease. Thus, the NciI polymorphism will not be useful for the diagnosis of subtypes of Gaucher disease. Carrier detection was feasible in three families with type I disease of the 8 families analyzed by the NciI polymorphism.  相似文献   

10.
The major processing steps in the maturation of the lysosomal hydrolase, acid beta-glucosidase, were examined in fibroblasts from normal individuals and from patients with types 1 and 2 Gaucher disease. In pulse-chase studies with normal fibroblasts, remodeling of N-linked oligosaccharides resulted in the temporal appearance of three molecular-weight forms of acid beta-glucosidase. An initial 64-kDa form, containing high mannose-type oligosaccharide side chains, was processed quantitatively, within 24 h, to a sialylated 69-kDa form. During the subsequent 96 h, some of the 69-kDa form is processed to 59 kDa. Glycosidase digestion studies revealed that the increase in the apparent molecular weight of the normal enzyme from 64 kDa to 69 kDa resulted primarily from the addition to sialic acid residues in the Golgi apparatus. The polypeptide backbone of both the 64-kDa and 69-kDa forms was 55.3 kDa. Processing of acid beta-glucosidase in fibroblasts from three of four type 1 (nonneuronopathic) Ashkenazi Jewish Gaucher disease patients was nearly normal. With fibroblasts from one Ashkenazi Jewish and three non-Jewish type 1 as well as from two type 2 (acute neuronopathic) Gaucher disease patients, only a 64-kDa form of acid beta-glucosidase was detected. Inefficient and incomplete processing to the 69-kDa form was found in one type 2 cell line (GM2627). These results indicate that no firm correlation exists between the type or degree of abnormal processing of acid beta-glucosidase in fibroblasts and the phenotype of Gaucher disease.  相似文献   

11.
Gaucher disease (GD) is the most prevalent lysosomal storage disease. This autosomal recessive trait results from the defective activity of acid beta-glucosidase (beta-Glc). Four different exonic point mutations have been identified as causal alleles for GD. To facilitate screening for these alleles, assays were developed using allele-specific oligonucleotide hybridization to amplified genomic DNA sequences. Specifically, intron bases flanking exons 5, 9, and 10 were determined, and conditions for PCR amplification of these exons were obtained. Two different procedures were developed to distinguish signals obtained from the structural beta-Glc gene exons and those from the pseudogene. These procedures were used to determine the distribution of all known GD alleles in a population of 44 affected patients of varying phenotypes and ethnicity. The high frequency of one of the exon 9 mutations in Ashkenazi Jewish GD type 1 patients was confirmed, and, in addition, this mutation was present in ethnically diverse non-Jewish type 1 GD patients. Homozygotes (N = 5) for this allele were midly affected older individuals, and this mutant allele was not found in any patient with neuronopathic disease. The exon 10 mutation was confirmed as the predominant allele in types 2 and 3 GD. However, several type 1 GD patients, including one of Ashkenazi-Jewish heritage, also were heterozygous for this allele. The presence of this allele in type 1 patients did not correlate with the severity of clinical symptoms. The second exon 9 mutation and the exon 5 mutation were rare, since they occurred only heterozygously either in one type 2 GD patient or in two related Ashkenazi-Jewish GD patients, respectively. Although most GD patients (38 of 44) had at least one of the known mutant alleles, 57% were heterozygotes for only one of these mutations. Fourteen percent of patients were negative for all mutations. A total of 73% of GD patients had at least one unknown allele. The varying clinical phenotypes and ethnic origins of these incompletely characterized patients suggest that multiple other GD alleles exist.  相似文献   

12.
Analyses of catalytic properties and inhibitor binding were conducted to investigate the molecular basis of active site function of human acid beta-glucosidases (EC 3.2.1.45) expressed from normal and Gaucher disease Type 1 alleles. Comparative studies were conducted with enzymes expressed from natural (spleen and fibroblasts) alleles or from mutagenized cDNAs in Spodoptera frugiperda (Sf9) cells using the baculovirus expression system. Mutant cDNAs containing Thr43 to Lys43 (beta-GlcThr43----Lys) and Asp358 to Glu358 (beta-GlcAsp358----Glu) substitutions and two cDNAs containing Ashkenazi Jewish Gaucher disease Type 1 mutations, Arg120 to Gln120 (beta-GlcArg120----Gln) and Asn370 to Ser370 (beta-GlcAsn370----Ser) were expressed and the gene products characterized by enzymatic, immunologic, and inhibitor studies. Genotypes at the acid beta-glucosidase locus in selected Gaucher disease Type 1 patients were determined by allele-specific oligonucleotide hybridization of amplified genomic DNA. Compared with normal, recombinant or natural enzymes expressed from beta-GlcAsn370----Ser alleles had about 2-5-fold decreased specific activity based on CRIM (cross-reacting immunologic material). The beta-GlcArg120----Gln cDNA expressed catalytically inactive CRIM in Sf9; consistent with the 9-fold decreased CRIM-specific activity of the natural enzyme from a beta-GlcArg120----Gln/beta-GlcAsn370----Ser genetic compound. The beta-GlcAsp358----Glu cDNA expressed catalytically inactive CRIM in Sf9 cells. The presence of natural or recombinant enzyme expressed from beta-GlcAsn370----Ser alleles was sufficient to confer 3-5-fold increased IC50 values for deoxynojirimycin, glucosylsphingosine, and N-alkyl-glucosylamine derivatives. Progress curves for inhibition by the slow-tight binding N-alkyl-glucosylamines indicated that the beta-Glc-Asn370----Ser mutation did not alter a conformational change induced by these reaction intermediate analogues. These results provide evidence that the beta-GlcArg120----Gln and beta-GlcAsn370----Ser mutations found in Gaucher disease Type 1 patient genomes are the molecular bases of the enzymatic dysfunction. In addition, the region including Arg120 and that encompassing Asp358 and Asn370 contain residues critical to active site formation or participation in the catalytic mechanism.  相似文献   

13.
Gaucher disease, a recessive inherited metabolic disorder caused by defects in the gene encoding glucosylceramidase (GlcCerase), can be divided into three subtypes according to the appearance of symptoms associated with central nervous system involvement. We now identify a protein, glycoprotein non-metastatic B (GPNMB), that acts as an authentic marker of brain pathology in neurological forms of Gaucher disease. Using three independent techniques, including quantitative global proteomic analysis of cerebrospinal fluid (CSF) in samples from Gaucher disease patients that display neurological symptoms, we demonstrate a correlation between the severity of symptoms and GPNMB levels. Moreover, GPNMB levels in the CSF correlate with disease severity in a mouse model of Gaucher disease. GPNMB was also elevated in brain samples from patients with type 2 and 3 Gaucher disease. Our data suggest that GPNMB can be used as a marker to quantify neuropathology in Gaucher disease patients and as a marker of treatment efficacy once suitable treatments towards the neurological symptoms of Gaucher disease become available.  相似文献   

14.
We have developed a series of powerful and versatile conditional-replication, integration, and modular (CRIM) plasmids. CRIM plasmids can be replicated at medium or high copy numbers in different hosts for making gene (or mutant) libraries. They can be integrated in single copies into the chromosomes of Escherichia coli and related bacteria to study gene function under normal physiological conditions. They can be excised from the chromosome, e.g., to verify that phenotypes are caused by their presence. Furthermore, they can be retrieved singly or en masse for subsequent molecular analyses. CRIM plasmids are integrated into the chromosome by site-specific recombination at one of five different phage attachment sites. Integrants are selected as antibiotic-resistant transformations. Since CRIM plasmids encode different forms of resistance, several can be used together in the same cell for stable expression of complex metabolic or regulatory pathways from diverse sources. Following integration, integrants are stably maintained in the absence of antibiotic selection. Each CRIM plasmid has a polylinker or one of several promoters for ectopic expression of the inserted DNA. Their modular design allows easy construction of new variants with different combinations of features. We also report a series of easily curable, low-copy-number helper plasmids encoding all the requisite Int proteins alone or with the respective Xis protein. These helper plasmids facilitate integration, excision ("curing"), or retrieval of the CRIM plasmids.  相似文献   

15.
The enzymatic activity of glucocerebrosidase in splenic extracts of the adult nonneurological form of Gaucher disease (type I) was 15% +/- 7% of normal, and the titer of enzyme cross-reacting material (ECRM) in these spleens was 54% +/- 9% of normal. The titer of ECRM in splenic extracts of tissues obtained from patients with the neurological forms of Gaucher disease (types II and III) was essentially the same as in type I Gaucher spleens (59% +/- 10% of normal), but the measurable catalytic activity of glucocerebrosidase in these spleens was substantially lower than that found in type I Gaucher spleens (2.3% +/- 0.6% of normal). Thus, the attentuated glucocerebrosidase activity in spleens from all three forms of Gaucher disease appears to stem from a structurally mutated enzyme that is altered in its catalytic efficiency and possibly in its antigenic expression.  相似文献   

16.
Clinical signs and symptoms of Gaucher disease are more severe in Japanese than in Jewish and other non-Japanese patients. A higher percentage of bone crises and splenectomy was demonstrated by Japanese patients, and there were five fatalities among patients with type 1 Gaucher disease. Additionally, neonatal Gaucher disease, clinically characterized by hydrops foetalis, was observed. Japanese patients with type 2 and type 3 disease also demonstrate clinical heterogeneity. About 100 alleles of patients with Japanese Gaucher disease were examined for genotype determination with the PCR and SSCP methods. About 18 different mutations, including several novel mutations in Japanese patients, were identified. The most common mutations in Japanese patients were 1448C(L444P), accounting for 41 (41%) of alleles. The second most prevalent mutation was 754A(F2131), accounting for 14 (14%) of alleles. Other alleles identified included the 1324C, IVS2 and other mutations. Unidentified alleles comprised 16% of the total number of alleles studied. To date, neither the 1226G (N370S) nor the 84GG mutation has been identified in the Japanese population, although these mutations account for about 70% and 10% of the mutations in Jewish and other non-Japanese populations, respectively. The phenotype-genotype correlation in Japanese patients is more complex compared with that of the Jewish population. In Japanese patients, the 1448C mutation, in either heteroallelic or homoallelic forms, exhibits both neurological and non-neurological phenotypes. Japanese patients with the 754A mutation also exhibit both neuronopathic and non-neuronopathic disease. On the other hand, patients with the D409H mutation show only type 3 neurological disease, and those with the 1447–1466 del 20 ins TG mutation have the severe, neonatal neurological form of Gaucher disease. The 1503T allele was present only in patients with type 1 non-neurological disease. However, since this correlation was observed only in young patients, we do not as yet know the final phenotypic outcome of this mutation. Probably, Japanese patients with Gaucher disease have few mutations that exhibit non-neurological signs and symptoms.  相似文献   

17.
Membrane-bound beta-glucosidase from cultured skin fibroblasts can be solubilized in an active form by treatment of membrane preparations with a mixture of Triton X-100 and sodium taurocholate. Several properties of the solubilized enzyme have been studied in fibroblasts from normal, healthy individuals and from 14 patients with different clinical forms of Gaucher disease. The patients studied were classified as follows: group 1 consisted of 10 chronic patients, all (with one exception) of Ashkenazi Jewish origin; group 2 consisted of three black American patients with severe visceral symptoms, manifest from early childhood, but with no apparent neurological involvement; and group 3 consisted of a single white patient with the classical infantile form of the disease. Specific beta-glucosidase activity ranged from 6.6% to 16.5% mean control value in group 1 patients and from 4.1% to 5.8% in groups 2 and 3. When compared with the enzyme from control fibroblasts, the enzyme from chronic Gaucher patients (group 1) was more rapidly inactivated at 50 degrees C, had an altered pH curve, was less effectively inhibited by deoxycorticosterone-beta-glucoside, and was more effectively inhibited by deoxycorticosterone. The enzyme from patients in groups 2 and 3 was qualitatively indistinguishable from the control enzyme in terms of these parameters. No differences in Km (4-methylumbelliferyl-beta-glucoside) or sedimentation coefficient were found between the beta-glucosidases from control and Gaucher cells. The results demonstrate that cells from Ashkenazi Jewish patients with the chronic form of Gaucher disease contain a structurally altered form of beta-glucosidase. This enzyme differs both from normal beta-glucosidase and from the residual enzyme in patients of different ethnic origin and with clinically more severe forms of the disease.  相似文献   

18.
Uteroferrin, a progesterone-induced secretory protein of the pig uterus, can noncovalently associate with additional progesterone-induced glycoproteins (uteroferrin-associated glycoproteins or UfAP) to form a heterodimer. The UfAP were dissociated from uteroferrin by passage through an immunoaffinity column. The flow through material consisted of two immunologically related variants of different size (Mr = 47,000-50,000 and Mr = 39,000-40,000) forms. By using an antiserum to all molecular weight components of the UfAP, it was shown that these glycoproteins were localized in the glandular epithelium of the uterus. Amino acid sequence analysis of the higher molecular weight (Mr = 47,000-50,000) form indicated it had a common amino-terminal sequence which was distinct from that of the lower molecular weight (Mr = 39,000-40,000) form. Endoglycosidase F treatment converted the Mr = 47,000-50,000 form to a common product with Mr = 43,000. Tryptic peptide analysis showed that the Mr = 39,000-40,000 form was closely related in primary sequence to the larger species. When endometrial RNA was translated in vitro, a single major product (Mr = 45,000) was immunoprecipitated by using the UfAP antiserum. These results suggest that the different forms of the UfAP originate from a single precursor by differential glycosylation and peptide cleavage. Endometrial explant cultures released all forms of the glycoproteins. When [32P]orthophosphate was provided, label was incorporated into the 6-position of D-mannosyl residues on the oligosaccharide chains of the UfAP. Therefore the associated glycoproteins have a structural feature normally associated with lysosomal enzymes.  相似文献   

19.
Using radiation inactivation and immunoblotting techniques, evidence for functionally active forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase with molecular weights of about 100,000 and 200,000 was obtained. In liver microsomes isolated from rats fed both mevinolin and colestipol, the Mr 100,000 form was the predominant species, whereas in microsomes from animals fed only colestipol, the Mr 200,000 species was the major form. This Mr 200,000 form could be converted to the Mr 100,000 form by addition of dithiothreitol or beta-mercaptoethanol. Although both forms appear to possess catalytic activity, the Mr 200,000 species displays sigmoidal kinetics with respect to the concentration of NADPH, whereas the Mr 100,000 form exhibits typical hyperbolic kinetics.  相似文献   

20.
Activator protein (AP), which stimulated fibroblast sphingomyelinase activity, was isolated from the spleen of a patient with Gaucher's disease type I by the combined techniques of heat and alcohol denaturation, DEAE-cellulose column chromatography, gel filtration, preparative polyacrylamide-gel electrophoresis and decyl-agarose chromatography. Urea/sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis showed two bands, one with an Mr of approx. 3,000 and the other with an Mr of 5,000-6,500. Similarly, SDS/polyacrylamide-gel electrophoresis performed in the absence of urea revealed the presence of two components, one of which adsorbed to a concanavalin A (Con A) column. Both components stimulated sphingomyelinase activity. On a non-denaturing polyacrylamide gel containing Triton X-100, four major components, two of which bound to Con A, were detected with the dye Stains-All. Cross-reacting material (CRM) to polyclonal Gaucher spleen AP antibodies was detected in normal fibroblasts and in fibroblasts from patients with sphingomyelinase and beta-glucocerebrosidase deficiency states (Niemann-Pick and Gaucher's diseases respectively). CRM in normal fibroblasts adsorbed to Con A columns and had the same mobility on SDS/polyacrylamide-gel electrophoresis as Con A-adsorbing Gaucher spleen AP. Normal AP was not observed in mucolipidosis type II (I-cell disease) fibroblasts; instead, extracts from these cells revealed the presence of two closely migrating bands with higher Mr values than normal fibroblast CRM. Furthermore, extracts of media from I-cell fibroblast cultures, but not from control or Gaucher fibroblast cultures, contained AP activity towards sphingomyelinase and beta-glucocerebrosidase. Fibroblasts from a patient with mucolipidosis type III (pseudo-Hurler polydystrophy) showed an intermediate pattern consisting of normal as well as the higher-Mr CRM. Our data provide evidence for the existence of AP in cultured skin fibroblasts and suggest that these proteins may be targetted to the lysosome by post-translational modification in a similar manner to that reported for lysosomal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号