首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pore water dynamics in the sediment of a shallow and hypertrophic lake   总被引:4,自引:3,他引:1  
Seasonal variations in pore water with main stress on pH and phosphate were investigated in the sediment of the shallow and hypertrophic Lake Søbygaard, Denmark. The purpose was to evaluate factors affecting the internal phosphorus loading. Pore water was obtained by in situ incubation of ceramic cups, sampled anaerobicaly from a fixed position in the sediment. The method is evaluated. During summer, pH and phosphate concentrations increased in the upper 8–10 cm of the sediment. Increased pH was most pronounced in the upper 5 cm, where pH increased to between 9 and 10. This is believed to be caused by the photosynthetically elevated pH in the above lake water. Phosphate concentrations increased with depth, from 0–2 mg P 1–1 in the upper 5 cm to 3–6 mg P 1–1 in 6–10 cm depth. Average phosphate gradient in the upper 6–8 cm was 1.0 mg P 1–1 cm –1 in the summer decreasing to 0.2 mg P 1–1 cm t1 in the autumn/winter. In spite of low redox potential, Fe(II) was not present in the upper 20 cm. The seasonal variation in pore water phosphate is believed mainly to be due to the variations in pore water pH inducing a substitution of phosphate ions with hydroxyl ions on ironhydroxides during summer. A considerable sedimentation of organic bound phosphorus and decomposition in the sediment is also considered important. Phosphorus release from the sediment is facilitated by bio- and gas turbation and by the frequent occurrence of resuspension caused by windaction. Net release rate is highly variable during the season. The summer average is 40 mg P m–2 d–1.  相似文献   

2.
A laboratory experiment was conducted to determine the effect of tubificid worms on the flux of zinc into lake sediments. Forty-six cores of Lake Erie sediment, with and without (control) tubificid worm populations, were exposed to aquarium water with a zinc concentration of about 5 mg 1–1 for 139 days. Pore water and exchangeable particulate zinc concentrations in the top 12 cm of sediment were periodically determined in pairs of cores — one with worms and one without worms — at 1 cm depth increments. After 139 days, pore water zinc concentrations in sediments with and without worms were nearly identical in the 0–1 cm interval (4.1 and 4.3 mg 1–1 respectively), but were significantly greater in the sediments with worms in the 1–2 cm (4.4 vs. 0.3 mg1–1) and the 2–3 cm (1.3 vs. 0.3 mg 1–1) intervals. Exchangeable particulate zinc concentrations in the 0–1, 1–2, and 2–3 cm intervals in sediments with worms were 612.3, 750.7, and 191.5 µg g–1 dry sediment respectively, whereas in sediments without worms, concentrations were 375.4, 5.9, and 3.2 µg g–1 dry sediment. The increased flux of zinc into tubificid-inhabited sediments was caused by the conveyor belt feeding activity of the worms, which continuously exposed sedimentary particles to the overlying water. Movement of zinc into sediments with worms was dominated by adsorption and by particle movement, whereas movement of zinc into control sediments was by adsorption at the sediment-water interface and diffusion. The increased concentration of zinc in tubificid-inhabited sediments has important implications with respect to the trophic transfer of zinc through the aquatic food chain.  相似文献   

3.
The concentration of the C2–C5 carboxylic acids in the water column and sediment of shallow, eutrophic, drainage channels (Lewes Brooks, UK) were measured by gas chromatography. The concentrations of these acids were negatively correlated with dissolved oxygen. The highest concentrations of acetate (up to 200 M), propanoate (up to 38 M) and butanoate (up to 1.2 M) were measured during the summer in the water above the sediment, which became hypoxic during this period. Both acetate and propanoate concentrations declined at night. High concentrations of the acids were also recorded in reedbeds, which were also hypoxic. Only acetate was detected in the sediment pore water (up to 168 M). Its concentration declined during the autumn and winter and with increasing depth within the sediment.Author for Correspondence  相似文献   

4.
Rates of bacterial production were measured in the water column, on the surface of plant detritus, and in the surface sediments of a freshwater marsh in the Okefenokee Swamp, Georgia, USA. Bacterioplankton production rates were not correlated with several measures of quantity and quality of dissolved organic matter, including an index of the relative importance of vascular plant derivatives. Bacterioplankton productivity was high (mean: 63 g C liter–1 day–1) compared with rates reported for other aquatic ecosystems. Somewhat paradoxically, bacterial productivity on plant detritus (mean: 13 g C g–1 day–1) and sediments (mean: 15 g C g–1 day–1) was low relative to other locations. On an a real basis, total bacterial productivity in this marsh ecosystem averaged 22 mg C m–2 day–1, based on sample dates in May 1990 and February 1991. Marsh sediments supported the bulk of the production, accounting for 46% (May) and 88% (February) of the total. The remainder was contributed approximately equally by bacteria in the water column and on accumulated stores of plant detritus. Send offprint requests to: M. A. Moran.  相似文献   

5.
Bonanni  P.  Caprioli  R.  Ghiara  E.  Mignuzzi  C.  Orlandi  C.  Paganin  G.  Monti  A. 《Hydrobiologia》1992,235(1):553-568
The Orbetello lagoon is now highly eutrophic and has experienced increasing incidence of anoxia causing serious economic damage. A multidisciplinary study was commenced in March 1987 to investigate the part played by the lagoon sediments and interstitial water in recycling nutrients and contributing to the observed anoxia. Eleven undisturbed cores were collected and sub-sampled at 2 cm intervals. Interstitial water was obtained by centrifugation and analyzed for pH, Eh, nutrients, major and some minor elements. Differential fluxes from the sediments of 0.2–10 g cm–2 day–1 of ammonia and 0.02–0.7 g cm–2 day–1 of orthophosphate were obtained depending on the season, temperature of the sediments and the sampling location. A highly significant linear correlation (r 2 = 0.86) was found between bicarbonate and ammonia concentrations in the interstitial waters, due to the release of these compounds during the degradation organic matter. A diagenetic model was developed to predict the alkalinity of interstitial water from the theoretical reactions involved in the decomposition of organic matter. The predicted values for bicarbonate and ammonia agreed well with the experimental results.  相似文献   

6.
Summary The kinetics ofBordetella pertussis growth was studied in a glutamate-limited continuous culture. Growth kinetics corresponded to Monod's model. The saturation constant and maximum specific growth rate were estimated as well as the energetic parameters, theoretical yield of cells and maintenance coefficient. Release of pertussis toxin (PT) and lipopolysaccharide (LPS) were growth-associated. In addition, they showed a linear relationship between them. Growth rate affected neither outer membrane proteins nor the cell-bound LPS pattern.Nomenclature X cell concentration (g L–1) - specific growth rate (h–1) - m maximum specific growth rate (h–1) - D dilution rate (h–1) - S concentration of growth rate-limiting nutrient (glutamate) (mmol L–1 or g L–1) - Ks substrate saturation constant (mol L–1) - ms maintenance coefficient (g g–1 h–1) - Yx/s theoretical yield of cells from glutamate (g g–1) - Yx/s yield of cells from glutamate (g g–1) - YPT/s yield of soluble PT from glutamate (mg g–1) - YKDO/s yield of cell-free KDO from glutamate (g g–1) - YPT/x specific yield of soluble PT (mg g–1) - YKDO/x specific yield of cell-free KDO (g g–1) - qPT specific soluble PT production rate (mg g–1 h–1) - qKDO specific cell-free KDO production rate (g g–1 h–1)  相似文献   

7.
Biotic and abiotic methane releases from Lake Biwa sediment slurry   总被引:1,自引:0,他引:1  
To determine the rate and mechanism of CH4 production in Lake Biwa sediment, slurry was prepared and incubated. Surface sediment (sed) slurry (1.5–6cm) showed a CH4 release rate (4.9–9.5nmolg-dry-sed–1 day–1) higher than that observed in the 5- to 10-cm sediment slurry (0.2–2nmolg-dry-sed–1 day–1). Methane release from the surface (1.5–6cm) sediment slurry was biotic and was inhibited by addition of 2-bromoethanesulfonate (BES, an inhibitor of CH4 production), whereas that from 5- to 10-cm sediment slurry was abiotic. The addition of BES, HNO3, and O2 showed no effect on the CH4 release rate from the 5- to 10-cm sediment slurry. In addition, tracers (NaH13CO3, 13CH3COONa) were not incorporated into the released CH4. However, 13C of CH4 released from the 5- to 10-cm sediment slurry (–74.0 ± 0.6) indicated that this CH4 was produced by bacterial metabolism in the past, stored by adsorption on the surface of clay minerals in the sediment, and then released abiotically by desorption from the sediment slurry as a result of a decrease in hydraulic pressure and CH4 concentration in the pore water. This CH4 stored by adsorption could be extracted by autoclaving. In the sediment below 5cm, bacterial activity for CH4 production ceased, possibly because of the limitated availability of H2. To clarify the mechanism of CH4 production in the sediment, biotic CH4 production and the abiotic CH4 release found here should be estimated separately.  相似文献   

8.
In a recent study on the degradation of N,N-dibutylurea (DBU), a breakdown product of benomyl [methyl 1-(butylcarbamoyl)-2-benzimidazole carbamate], the active ingredient in Benlate® fungicides, degradation half-lives of 1.4–46.5days were observed across several soils incubated at various combinations of soil moisture potential (–0.03 and –0.1MPa) and temperature (23, 33, and 44°C) for a single DBU application of 0.08 and 0.8 g g–1 (Lee et al. 2004). However, Benlate® can be applied as often as every 7days resulting in the repeated application of DBU likely to be present in the Benlate® over a growing season. In this study, the effect of seven repeated DBU applications on mineralization rate was investigated in two soils, which encompass the range in rates previously observed. For the slower degrading soil, repeated DBU application increased mineralization from 0.029 to 0.99day–1 at the 0.08 g g–1 rate, and 0.037 to 0.89day–1 at the 0.8 g g–1 rate. For the faster degrading soil, effects on mineralization of repeated DBU applications were small to negligible. For the latter soil, the effect on mineralization of applied DBU concentrations from 0.0008 to 80 g g–1 was also investigated. Mineralization rates decreased from 0.43 to 0.019day–1 with increasing DBU concentrations. However, the amount of DBU mineralized by day 70 was similar across concentrations and averaged 83% of applied. Microbial respiration was not affected by increasing DBU concentrations. These findings support the supposition that DBU is readily degraded by soil microorganisms, thus unlikely to accumulate in agricultural soils.  相似文献   

9.
We studied the effect of a calcite (CaCO3) treatment on peat and pore water chemistry in poor fen and conifer swamp wetlands next to Woods Lake and its tributaries to evaluate the role of wetlands in an Experimental Watershed Liming Study (EWLS). Peat was characteristically organic rich and nutrient poor, with exchangeable Ca concentrations of < 13 cmolckg–1. We estimated that between 0.4 to 4 Mg (CaCO3) ha–1 fell directly on three study sites; however, one year after the treatment the increase in Ca concentration (0–8 cm depth) was equivalent to a (CaCO3) dosage of 3 Mg ha–1 with an additional 2–4 Mg ha–1 of undissolved (CaCO3) still present, suggesting the peat retained Ca supplied from uplands. Most aspects of peat chemistry including microbial respiration and SO4 reduction did not respond to the treatment.Peat pore water (5 and 20 cm depths) had a mean pH of 4.82 before treatment with high concentrations of dissolved organic carbon (DOC mean of 790 mol C/l) and low Ca2+ concentration (mean of 32 mol/l). The (CaCO3) treatment increased concentrations of Ca2+ to a mean of 87 mol/l and dissolved inorganic carbon (DIC) from 205 to a mean of 411 mol/l, whereas it decreased monomeric Al concentration from 19 to 10 mol/l. Otherwise, pore water chemistry showed little response to the treatment, at least within natural spatial and temporal variation of solute concentrations. The results suggest that liming watersheds with the relatively low (CaCO3) dosage applied in this study can benefit acidic waters downstream by exporting more Ca and DIC and less monomeric Al, with otherwise little effect on the peat itself.  相似文献   

10.
Selig  Uwe 《Hydrobiologia》2003,492(1-3):107-118
Phosphate binding and P-release in the sediment of the eutrophic shallow Lake Bützow are described based on sediment profiles, particle size fractions and incubation experiments. Total phosphorus was about 15% higher in the upper 0.5 cm layer than in the 0.5–1 cm layer. Phosphorus binding varied with sediment depth. Hot PNaOH and PHCl were the dominant fractions in all sediment horizons down to 10 cm depth, with values ranging from 20 to 30%. The PH2O, PBD, o-PNaOH and nr-PNaOH decreased with depth. The PBD contributed 21% to Tot-P in the horizon 0–0.5 cm and decreased by half in 1–2 cm. The greatest proportion of particles (35%) was found in the 100–200 m fraction. This size fraction also accumulated most of the phosphate. Moreover, P-forms were differently distributed in the various particle sizes of the sediment. Sediment particles <40 m can be resuspended by a wind velocity of 2 m s–1, whereby 17% of the Tot-P from the topmost sediment were transported into the water column. The proportions of released labile phosphate, organic phosphate and hydrolysable phosphate were higher, with values of 24, 33 and 26%, respectively. Dissolved P was released under oxic and anoxic incubation, but anoxic release was higher. Comparison of the results shows that the P-release under anoxic conditions was equal to the P-release by resuspension, but under anoxic conditions the release of bioavailable P was higher.  相似文献   

11.
Estimates of bacterial production based on total trichloroacetic acid (TCA)-precipitable [methyl-3H]thymidine incorporation and frequency of dividing cell (FDC) techniques were compared to sediment respiration rates in Lake George, New York. Bacterial growth rates based on thymidine incorporation ranged from 0.024 to 0.41 day–1, while rates based on FDC ranged from 1.78 to 2.48 day–1. Respiration rates ranged from 0.11 to 1.8mol O2·hour–1·g dry weight sediment–1. Thymidine incorporation yielded production estimates which were in reasonable agreement with respiration rates. Production estimates based on FDC were 4- to 190-fold higher than those predicted from respiration rates.  相似文献   

12.
Phosphorus removal by ponds receiving polluted water from non-point sources   总被引:1,自引:0,他引:1  
Phosphorus discharged into the water column of lakes, streams, reservoirs, and ponds is either assimilated by algae or retained by the sediment. A laboratory study was conducted using intact sediment-water columns obtained from three ponds to measure their capacity to assimilate P. Phosphorus retention by these systems was determined at two P levels (2 and 10 mg PL–1 or equivalent to an area loading of 26 and 130 g cm–2). The potential P removal rates were 20.4, 28.8 and 30.8 g P CM–2 day–1 for PSF (pond adjacent to septic fields), PP(pond adjacent to a pasture), and PAF (pond adjacent to agricultural farm land), respectively. Longer residence time was needed for P removal at high P loading (10 mg PL–1) than at low P loading (2 mg P L–1). At high P loading, 76–82% of the floodwater P was removed within 10 days. All sediments showed a greater sorption capacity under reduced conditions than under oxidized conditions. At the P levels evaluated, pond sediments functioned as net sinks for water column P.  相似文献   

13.
Summary The effects of ammonium or nitrate-nitrogen on biological nitrogen fixation by an algal crust are compared. Nitrate-nitrogen up to 3.0 moles N g–1 sand/algal crust at 60% water holding capacity did not affect fixation, whereas an ammonium-nitrogen concentration of 0.2 moles N g–1 crust markedly depressed fixation. Consequences of these differential effects are considered.  相似文献   

14.
We investigated P-input by the Rhone river into the Mediterranean Sea taking into account P trapped in the surface sediment of the Gulf of Lions. Total phosphate concentration was determined every cm in the upper 10 cm-layer of sediments sampled at 11 stations in the Gulf of Lions during two cruises (March 1998 and January 1999). Two low downward gradients, one East–West and another North–South, with distance to the Rhone river mouth were found. Except at one station, total phosphate concentration in surface sediments was found to be constant with depth down to 10 cm. Values for individual stations ranged between 400 and 700 g g–1 with an average value of 547 g g–1 (st. dev. = 63 g g–1) for the whole gulf. The low variability in total-P concentration in sediments is in contrast to the large variability in suspended matter load of the river Rhone and suggests the dominance of authigenic P removal mechanisms in P burial. The total P-pool in the upper 10 cm-layer of the sediments in the gulf was estimated at 562 kt, with about 80% trapped into the shelf and 20% into the slope. Annual P-deposition was estimated as 7.2–12.4 kt y–1, from the P-pool in the sediment and the sedimentation rates. This is equivalent to a previous estimation of the river Rhone input, estimated to be about 6.5–12.2 kt y–1. As the Rhone is the major river flowing into the Mediterranean Sea, total P in surface sediments of the Gulf of Lions should be taken into account in P-budgets at the scale of the Mediterranean Sea.  相似文献   

15.
Summary We assessed the feeding biology of veliger larvae of the introduced zebra mussel (Dreissena polymorpha Pallas) in laboratory experiments using inert microspheres as food analogues. Mean clearance rate on 2.87-m beads ranged between 247 and 420 L veliger–1 day–1. Clearance rate was unrelated to bead concentration up to 100 beads L–1, but was positively correlated with veliger shell length. Clearance rates of Dreissena veligers are within the range of those reported for marine bivalve veligers of similar size and for herbivorous Great Lakes microzooplankton, but are orders of magnitude lower than those of settled, conspecific adults. The impact of settled zebra mussel grazing activities on phytoplankton stocks may be up to 1162 times greater than that exerted by veliger populations in western Lake Erie. Based on 1990 size-frequency distributions and associated literature-derived clearance rates, reef-associated Dreissena populations in western Lake Erie (mean depth 7 m) possess a tremendous potential to filter the water column (up to 132 m3 m–2 day–1) and redirect energy from pelagic to benthic foodwebs. Preliminary analyses indicate that chlorophyll a concentration is strongly depleted (<1 g L–1) above Dreissena beds in western Lake Erie.  相似文献   

16.
Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary   总被引:1,自引:1,他引:0  
Seasonal variation of dimethylsulfide (DMS) and methane thiol (MSH) concentrations in sediment porewater was determined in a Danish estuary. Dimethylsulfide (DMDS) was never found. Detectable DMS levels of up to 0.1 M were found only in the summer and only within the upper 5 cm of the sediment. The DMS accumulation was probably associated with decomposing fragments of macro-algae in the surface layer. Significant MSH accumulation of up to 1 M was found only in the deep, CH4-rich sediment below the SO4 2- zone. With depth, a detectable MSH level could thus be observed below the 1 mM SO4 2--isopleth which also marked the SO4 2--CH4 transition. The transition zone was located deeper in the sediment in winter (20–25 cm depth) than in summer (5–10 cm depth). The absence of MSH in the SO4 2- zone could be due to rapid utilization of the compound by SO4 2--reducing bacteria. A possible involvement of MSH in anaerobic CH4 oxidation at the transition zone is discussed; CH4 and sulfide (HS- form, pH 7) are proposed to form MSH and H2 which in turn may be metabolized by, e.g. SO4 2--reducing bacteria.  相似文献   

17.
Phytoplankton biomass and primary production rates within semi-enclosed reef lagoons of the central Great Barrier Reef were compared with adjacent shelf waters. Chlorophyll concentrations and surface primary production rates were usually higher in lagoons although seasonal differences were only significant during the summer. Nitrate concentrations were higher in lagoons than in shelf waters year-round. Nano- (<20 m size fraction) or pico-phytoplankton (<2 m size fraction) dominated phytoplankton biomass and production within reef lagoons throughout the year. Net phytoplankton (>10–20 m size fraction), however, were relatively more important in both reef lagoons and open shelf waters during the summer. Biomass-specific production within lagoons (range 41–90 mg C mg chl–1 day–1) was high, regardless of season. Lagoonal phytoplankton production (range 0.2–1.6 g C m–2 day–1) was directly correlated with standing crop and inversely related to lagoon flushing rates. Phytoplankton blooms develop within GBR reef lagoons during intermittent calm periods when water residence times exceed phytoplankton generation times.  相似文献   

18.
During a winter expedition to the western Barents Sea in March 2003, benthic amphipods of the species Anonyx sarsi were observed directly below pack ice. Only males and juveniles [16.0–37.0 mm long, 16.2–120.8 mg dry mass (DM)] were collected. Guts contained macroalgal fibres, fish eggs and flesh from large carrion. Amphipods had very low levels of total lipids (2.7–17.2% DM). Analysis of lipid biomarkers showed that some of the specimens had preyed on pelagic copepods. Individual respiration rates ranged over 0.4–1.7 ml O2 day–1 (mean: 1.2 ml, SD: 0.5 ml). Individual ammonia excretion rates varied between 7.8 g and 49.3 g N day–1 (mean: 30.7 g, SD: 15.2 g). The atomic O:N ratio ranged over 35 to 71 (mean: 55, SD: 14), indicating lipid-dominated metabolism. Mass-specific respiration ranged over 9.8–16.6 ml O2 day–1 g DM–1 (mean: 13.1 ml, SD: 2.2 ml). The metabolic rates of A. sarsi were twice as high as those of the truly sympagic amphipod Gammarus wilkitzkii, which is better adapted to the under-ice habitat by its energy-saving attached lifestyle. It is concluded that males and juveniles of A. sarsi were actively searching for food in the water column and at the ice underside, but that the nutritional status of the amphipods in late Arctic winter was generally very poor.  相似文献   

19.
Pesticides and heavy metals in Danish streambed sediment   总被引:2,自引:0,他引:2  
Kronvang  B.  Laubel  A.  Larsen  S. E.  Friberg  N. 《Hydrobiologia》2003,494(1-3):93-101
The role of streambed sediment as a sink for pesticides and heavy metals was investigated in 30 Danish lowland streams. The investigated streams drain catchments varying in hydrology, topography, soil type and land use. The <250 m newly accumulated fraction of the uppermost 1–2 cm layer of streambed sediment was analysed for 19 old and modern pesticides and 9 heavy metals. DDE was present in the sediment of all the streams. Of the herbicides, fungicides and insecticides currently in use, the most frequently detected was diuron (50.0%), fenpropimorph (66.7%) and lambda-cyhalothrin (6.7%), respectively. The pesticides detected in the highest concentration were fenpropimorph (1700 ng g–1), propiconazole (130 ng g–1) and isoproturon (110 ng g–1). The heavy metals are listed in order of increasing median concentration: Cd (0.80 g g–1), Co (9.1 g g–1), As (12.0 g g–1), Ni (19.0 g g–1), Cr (19.2 g g–1), Pb (19.7 g g–1), Cu (20.1 g g–1), V (28.5 g g–1), Zn (103 g g–1). The average number of pesticides detected in the 27 streams draining predominantly agricultural catchments was (3.7±2.0) being higher (p=0.077) than in the three streams draining non-agricultural catchments (1.7±0.6). Pesticides were significantly related to catchment size, soil type and hydrological regime. Several heavy metals (Cr, Cu, Pb, V and Zn) were related to urban activity and soil type.  相似文献   

20.
Nitrification rates were measured along a salinity gradient in the Rhône River estuary, using specific inhibitors (allylthiourea and chlorate) coupled with the measurement of change in nitrite concentration and inorganic carbon uptake by nitrifiers. Rates of ammonium and nitrite oxidation were similar up to 15 practical salinity units (from 1 to 2 mol N oxidized liter-1 day-1). For higher salinities, nitrite and ammonium oxidation rates were 0.14 and 0.23 mol N oxidized liter-1 day-1, respectively. Ammonium oxidizers assimilated 19–150 × 10–3 mol C liter-1 day-1, while nitrite oxidizers fixed 4.8–72.6 × 10–3 mol C liter-1 day-1. The amounts of nitrogen oxidized and C incorporated demonstrated a linear correlation (r 2 > 0.99). The ratio of N oxidized to C incorporated ranged between 14.3 to 12.3 for ammonium oxidizers, and between 31.6 and 29 for nitrite oxidizers, the lower values being measured in seawater. Offprint requests to: M. Bianchi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号