首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Bivalve classification has suffered in the past from the crossed-purpose discussions among paleontologists and neontologists, and many have based their proposals on single character systems. More recently, molecular biologists have investigated bivalve relationships by using only gene sequence data, ignoring paleontological and neontological data. In the present study we have compiled morphological and anatomical data with mostly new molecular evidence to provide a more stable and robust phylogenetic estimate for bivalve molluscs. The data here compiled consist of a morphological data set of 183 characters, and a molecular data set from 3 loci: 2 nuclear ribosomal genes (18S rRNA and 28S rRNA), and 1 mitochondrial coding gene (cytochrome c oxidase subunit I), totaling ∼3 Kb of sequence data for 76 molluscs (62 bivalves and 14 outgroup taxa). The data have been analyzed separately and in combination by using the direct optimization method of Wheeler (1996), and they have been evaluated under 12 analytical schemes. The combined analysis supports the monophyly of bivalves, paraphyly of protobranchiate bivalves, and monophyly of Autolamellibranchiata, Pteriomorphia, Heteroconchia, Palaeoheterodonta, and Heterodonta s.l., which includes the monophyletic taxon Anomalodesmata. These analyses strongly support the conclusion that Anomalodesmata should not receive a class status, and that the heterodont orders Myoida and Veneroida are not monophyletic. Among the most stable results of the analysis are the monophyly of Palaeoheterodonta, grouping the extant trigoniids with the freshwater unionids, and the sister-group relationship of the heterodont families Astartidae and Carditidae, which together constitute the sister taxon to the remaining heterodont bivalves. Internal relationships of the main bivalve groups are discussed on the basis of node support and clade stability.  相似文献   

2.
The Cerithioidea is a very diverse group of gastropods with ca. 14 extant families and more than 200 genera occupying, and often dominating, marine, estuarine, and freshwater habitats. While the composition of Cerithioidea is now better understood due to recent anatomical and ultrastructural studies, the phylogenetic relationships among families remain chaotic. Morphology-based studies have provided conflicting views of relationships among families. We generated a phylogeny of cerithioideans based on mitochondrial large subunit rRNA and flanking tRNA gene sequences (total aligned data set 1873 bp). Nucleotide evidence and the presence of a unique pair of tRNA genes (i.e., threonine + glycine) between valine-mtLSU and the mtSSU rRNA gene support conclusions based on ultrastructural data that Vermetidae and Campanilidae are not Cerithioidea, certain anatomical similarities being due to convergent evolution. The molecular phylogeny shows support for the monophyly of the marine families Cerithiidae [corrected], Turritellidae, Batillariidae, Potamididae, and Scaliolidae as currently recognized. The phylogenetic data reveal that freshwater taxa evolved on three separate occasions; however, all three recognized freshwater families (Pleuroceridae, Melanopsidae, and Thiaridae) are polyphyletic. Mitochondrial rDNA sequences provide valuable data for testing the monophyly of cerithioidean [corrected] families and relationships within families, but fail to provide strong evidence for resolving relationships among families. It appears that the deepest phylogenetic limits for resolving caenogastropod relationships is less than about 245--241 mya, based on estimates of divergence derived from the fossil record.  相似文献   

3.
The bivalve family Corbulidae, known colloquially as ‘basket clams’, includes species tolerating a wide variety of habitats ranging from open marine to freshwater. Previous studies of corbulid phylogenetics have been based mainly on shell morphology and to some extent soft tissue anatomy. However, these studies have been inadequate for corbulid classification because of difficulties in determining the inter‐relationships of primarily marine species with non‐marine species, the latter commonly exhibiting highly divergent morphological, ecological and environmental characteristics from their marine counterparts. The first molecular phylogenetic study of the Corbulidae is presented herein, analysing DNA sequences from the 18S rRNA and 28S rRNA genes, separately and in combination. Fifteen corbulid species and 14 outgroup taxa were included in the analyses. Corbulidae is resolved as monophyletic, comprising three groups with varying support. The non‐marine species form one group that we name as the subclade ‘limnetic–euryhaline Corbulidae’ (LEC) and comprising the genera Lentidium, Erodona and Potamocorbula. This LEC, which is consistently recovered as monophyletic, is globally distributed. The marine Corbulidae are divided into two well‐supported lineages in combined analyses although there are inconsistencies in their membership between single‐gene analyses. One of the two lineages consists of primarily Western Pacific taxa and the other of North American and Caribbean taxa. Finally, the authors advocate further study on the LEC to mitigate potential biological invasions beyond their native distribution.  相似文献   

4.
The Cerithioidea is an ecologically important superfamily of basal Caenogastropoda with speciose marine, brackish water, and freshwater lineages primarily in tropical, subtropical, and warm temperate regions of the world. They often represent significant components of the communities where they occur and have given rise to several spectacular endemic radiations in rivers and ancient lakes. Earlier attempts to resolve the phylogenetic history of the group have been based on smaller taxon and character subsets with incongruent results. Here the monophyly and phylogeny of the group is evaluated with expanded morphological and molecular (16S, 28S rRNA) data sets. For morphological analyses, 151 characters (shell, operculum, radula, alimentary tract, kidney, nervous system, reproductive anatomy, and sperm ultrastructure) were scored for 47 cerithioideans (representing 17 families) and nine outgroup taxa. To test monophyly of the Cerithioidea, extended molecular data sets of 16S and 28S sequences for 57 and 44 taxa, respectively, were compiled using new and previously published sources. For combined analyses, a pruned molecular data set was combined with the morphological partition. The morphological data were analysed alone using only parsimony; molecular and simultaneous analyses were performed using both parsimony and Bayesian inference. The effect of excluding unconserved regions of the alignments was also explored. All analyses, with the exception of the individual 16S and 28S data sets, support monophyly of the Cerithioidea as currently formulated. Of the 12 families represented by more than one terminal, only two (Planaxidae, Potamididae) are always supported as monophyletic; Batillariidae, Cerithiidae, Pachychilidae, Pleuroceridae, Semisulcospiridae, Thiaridae, and Turritellidae are monophyletic in most but not all topologies. The combination of diverse data sources (morphology, 16S and 28S sequences) and inclusion of unconserved regions of the alignments improved the recovery of monophyletic families. At deeper levels, a consensus is beginning to emerge in the recognition of three main assemblages, but whether these represent clades or grades is still unclear; the resolution of these assemblages and the branching order within them are sensitive to exclusion of unconserved regions and choice of optimality criterion. No clear conclusion is reached with respect to the number of freshwater invasions, with two invasions supported on some topologies and three supported on others. Progress toward a robust and stable resolution of cerithioidean relationships will require (1) strategically coordinated sampling for additional morphological and molecular data; (2) comprehensive anatomical treatments for several poorly documented limnic lineages (e.g. Melanopsidae, Thiaridae) and comparative data for poorly understood organ systems (e.g. renal system); (3) the addition of poorly known, minute, and/or rare marine taxa, to provide novel character combinations, insight into putative homologies, and to help anchor basal nodes and break up long branches. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 43–89.  相似文献   

5.
Oysters are among the most familiar, best studied, and morphologically variable of all marine invertebrate taxa. However, our knowledge of oyster phylogeny and systematics is rudimentary, especially for the subfamily Ostreinae (flat oysters). It is unclear, for instance, whether the predominant flat oysters occurring between latitudes 35 and 50 degrees S constitute a single circumglobal species, or multiple, phylogenetically distinct, regional taxa. We have performed the first DNA molecular phylogenetic analysis of ostreinid taxa to distinguish among competing phylogenetic and systematic hypotheses for Southern Hemisphere Ostreinae. An approximately 450-nucleotide fragment of the mitochondrial large ribosomal subunit (16S) was sequenced for 41 individual oysters, representing 14 taxa of brooding oysters: 5 Southern Hemisphere Ostreinae, 5 Northern Hemisphere Ostreinae, and 4 outgroup species of the subfamily Lophinae. Phylogenetic analyses of the resulting data set yielded consensus tree topologies that are comprehensively incongruent with prevailing morphologically based interpretations of systematic relationships among the Ostreinae. Three ostreinid mitochondrial clades were evident, each containing representatives of Southern Hemisphere regional ostreinid taxa, some of which robustly cocluster with Northern Hemisphere taxa. These three clades represent the first well-supported phylogenetic framework for this ecologically prominent and commercially important oyster subfamily.  相似文献   

6.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

7.
In this study we elaborate the phylogeny of Dalytyphloplanida based on complete 18S rDNA (156 sequences) and partial 28S rDNA (125 sequences), using a Maximum Likelihood and a Bayesian Inference approach, in order to investigate the origin of a limnic or limnoterrestrial and of a symbiotic lifestyle in this large group of rhabditophoran flatworms. The results of our phylogenetic analyses and ancestral state reconstructions indicate that dalytyphloplanids have their origin in the marine environment and that there was one highly successful invasion of the freshwater environment, leading to a large radiation of limnic and limnoterrestrial dalytyphloplanids. This monophyletic freshwater clade, Limnotyphloplanida, comprises the taxa Dalyelliidae, Temnocephalida, and most Typhloplanidae. Temnocephalida can be considered ectosymbiotic Dalyelliidae as they are embedded within this group. Secondary returns to brackish water and marine environments occurred relatively frequently in several dalyeliid and typhloplanid taxa. Our phylogenies also show that, apart from the Limnotyphloplanida, there have been only few independent invasions of the limnic environment, and apparently these were not followed by spectacular speciation events. The distinct phylogenetic positions of the symbiotic taxa also suggest multiple origins of commensal and parasitic life strategies within Dalytyphloplanida. The previously established higher-level dalytyphloplanid clades are confirmed in our topologies, but many of the traditional families are not monophyletic. Alternative hypothesis testing constraining the monophyly of these families in the topologies and using the approximately unbiased test, also statistically rejects their monophyly.  相似文献   

8.
9.
Long-lived lakes are often sites of spectacular endemic radiations. During the Oligocene to recent history of the Paratethys, large, long-lived (more than a million years) lakes with endemic faunas formed three times, in three different basins: the first in the Pannonian basin, the second in the Euxinian (Black Sea) basin, and the third in the Caspian basin. Because the Euxinian lake inherited much of the fauna of Lake Pannon, the three lakes together hosted two endemic radiations of molluscs. The most long-lived lake in the region was Lake Pannon, which persisted approximately seven million years from the late Middle Miocene to the Early Pliocene. Lake Pannon was formed by isolation from the sea. Changes in hydrological regime and/or water chemistry in addition to the relative lowstand which accompanied (or caused) the isolation almost completely exterminated the restricted marine fauna of the basin. A few highly euryhaline and marginal marine cardiids, dreissenids, and hydrobiids survived this environmental change. As in other fossil and extant long-lived lakes, the originally low-diversity fauna radiated into a high number of related endemic species (‘species flocks’) and genera in the expanding and ecologically vacated lake. Many originally freshwater taxa (unionids, sphaeriids, viviparids, valvatids, melanopsids, lymnaeids, planorbids) entered the lake as well, and some of them also gave rise to endemic clades. Evolution in both relict and freshwater immigrant groups led to the appearance of highly unusual shell shapes. Many lineages exhibit gradual morphological changes over one to several million years. More than 900 endemic mollusc species have been described from Lake Pannon, although this number includes junior synonyms, invalid species names, and highly similar chronospecies. Applying a conservative taxonomy, all these species belong to four bivalve and eight gastropod families. The high degree of endemism, however, is reflected by proposals of some authors to establish as many as five new families based on Lake Pannon endemics.  相似文献   

10.
The ability of the program POY, implementing optimization alignment, to deal with major indels is explored and discussed in connection with a phylogenetic analysis of the genus Secale based on partial Adh1 sequences. The Adh1 sequences used span exon 2-4. Nearly all variation is found in intron 2 and intron 3, which form the basis for the phylogenetic analyses. Both in some ingroup and outgroup taxa intron 3 has a major duplication. Previous phylogenetic analyses have repeatedly confirmed monophyly of both Secale and Hordeum, the latter being part of the outgroup. However, optimization alignment only recovers both genera as monophyletic when knowledge of the duplication is incorporated in the analysis. The phylogenetic relationships within Secale are not clearly resolved. Subspecific taxa of Secale strictum have identical sequences and they are confined to a monophyletic group. However, the two subspecific taxa of Secale cereale do not form a monophyletic group, and the position of Secale sylvestre is uncertain.  相似文献   

11.
12.
Considerable confusion remains among theoreticians and practicioners of phylogenetic science on the use of outgroup taxa. Here, we show that, despite claims to the contrary, details of the optimal ingroup topology can be changed by switching outgroup taxa. This has serious implications for phylogenetic accuracy. We delineate between the process of outgroup selection and the various possible processes involved in using an outgroup taxon after one has been selected. Criteria are needed for the determination that particular outgroup taxa do not reduce the accuracy of evolutionary tree topologies and inferred character state transformations. We compare previous results from a sensitivity bootstrap analysis of the mitochondrial cytochromebphylogenetic relationships among whales to the results of a Bremer support sensitivity analysis and of a recently developed application of RASA theory to the question of putative outgroup taxon plesiomorphy content.  相似文献   

13.
SYNOPSIS. There are some 36 families that are wholly freshwateror with representative species in freshwater. There are virtuallyno phylogenetic analyses for these families. Zoogeographic analysesof freshwater molluscan faunas are hindered by a lack of significantsystematic studies of these faunas. Such studies are essentialif one hopes to develop hypotheses about phylogeny or biogeography. It is clear from a phylogenetic analysis of the Pomatiopsidaethat phylogenetic, vicariance, dispersal, and ecological factorsall have significant effects on the patterns of distributionof this family. At one stage in history vicariance may be adominant factor while during another stage of history, dispersalmay be a dominant factor. At every stage, ecological considerationsare necessary to understand the phenotypes seen and the spatialrelationships among taxa. In examining the distribution patternsof dominant freshwater families with regard to their biological,ecological, and overall phylogenetic relationships it is evidentthat ecology plays a major role along with dispersal and vicariance.Clearly a synthesis is needed in biogeographical studies thatincorporates vicariance dispersal, ecology, and geology-paleontology.  相似文献   

14.
The blood flukes of turtles (Digenea: Spirorchiidae) and the blood flukes of crocodilians, birds and mammals (Digenea: Schistosomatidae) have long been considered as closely related, but distinct evolutionary lineages. Recent morphological and molecular studies have considered these families as sister taxa within the Schistosomatoidea. Representatives of both families have similar furcocercous cercariae and similar two-host life cycles, but have different definitive hosts, distinct reproductive patterns and different morphologies. Sequences including approximately 1800 bases of the small subunit ribosomal DNA and 1200 bases of the large subunit ribosomal DNA were generated from representatives of eight spirorchiid genera. These sequences were aligned with pre-existing sequences of Schistosomatidae and other representatives of the Diplostomida and analysed for phylogenetic signal using maximum parsimony and Bayesian inference. These analyses revealed that the Spirorchiidae is paraphyletic and that the turtle blood flukes are basal to the highly derived schistosomatids. Three genera of spirorchiids from marine turtles form a sister group to the Schistosomatidae and five genera of spirorchiids from freshwater turtles occupy basal positions in the phylogeny of tetrapod blood flukes. Marine turtles are considered to be derived from freshwater turtles and the results of the current study indicate that the spirorchiid parasites of marine turtles are similarly derived from a freshwater ancestor. The close relationship of the marine spirorchiids to schistosomatids and the basal position of the marine transmitted Austrobilharzia and Ornithobilharzia in the schistosomatid clade suggests that schistosomatids arose after a marine turtle blood fluke ancestor successfully colonised birds.  相似文献   

15.
We have performed the first DNA molecular phylogenetic analysis of giant clams. An approximately 462-nucleotide fragment of the mitochondrial large ribosomal subunit (16S) was sequenced for all eight species of giant clams and two species of an outgroup taxon, the edible cockle Cerastoderma. The data were analyzed using a maximum parsimony approach and a single most parsimonious tree was found. The resulting phylogenetic hypothesis indicates that the genera Hippopus and Tridacna are monophyletic sister taxa. Tridacna (Chametrachea) is the sister taxon to (T. tevoroa (T. derasa + T. gigas)), with these latter three taxa all being placed in a single subgenus, Tridacna (Tridacna). The number of recognized giant clam species has increased by one-third over the last two decades with the discovery of two rare new species having restricted geographic ranges: H. porcellanus (Palau and the Sulu Archipelago) and T. tevoroa (Tonga and Fiji). These two species lack a known fossil record but exhibit greater genetic distances from sister taxa than do extant giant clam species pairs which are recognizable in Neogene strata, e.g., T. gigas/T. derasa and T. maxima/T. squamosa. We propose that the two new species represent ancient relict lineages of Miocene origin.  相似文献   

16.
The chloroplast gene ndhF was used to study phylogenetic relationships of the Polemoniaceae at two levels: among members of the Ericales and among genera of the family. Sequence data for interfamilial analyses consisted of 2266 bp for 14 members of the Ericales, including four species of the Polemoniaceae, plus three outgroup taxa. The Polemoniaceae were found to be related to Diospyros, Fouquieria, the Primulales, Rhododendron, and Impatiens, but relationships among taxa were generally not well supported. The precise position of the Polemoniaceae within the Ericales remains obscure. Data for intrafamilial analyses consisted of 1031 bp for 27 species of the Polemoniaceae, including at least one species from most genera of the family, plus five outgroup taxa. A single most parsimonious tree was identified. The analyses suggested that subfamily Cobaeoideae, excluding Loeselia, is monophyletic and that Huthia is sister to Cantua. Acanthogilia was sister to the remainder of subfamily Cobaeoideae. Subfamily Polemonioideae plus Loeselia formed four subclades that were strongly supported as monophyletic and represent the major lineages of the subfamily.  相似文献   

17.
The cosmopolitan viviparous bivalves of the family Sphaeriidae (fingernail clams) comprise not only some of the smallest freshwater molluscs, but also an abundant and ecologically important group that often dominates benthic communities of springs, ponds and swamps. The origin from marine ancestors and their subsequent evolution in limnic environments, in particular the development of distinct reproductive modes including complex parental care repertoires, are largely unresolved. This paper presents the results of a phylogenetic analysis of 69 morphological characters from 57 taxa (54 representing sphaeriids throughout the distribution area plus three outgroups). The heuristic search resulted in 753 most-parsimonious trees of length 154 [consistency index (CI) = 0.682, retention index (RI) = 0.906, rescaled consistency index (RC) = 0.618]. Only Pisidium of the three traditionally regarded constituent genera is supported as a monophyletic group; Sphaerium and Musculium in their traditional deliminations are found to be paraphyletic. Instead, the analysis supports a clade comprising all species of Musculium plus Pisidium as suggested by previous morphology-based classifications. However, the shortest tree alternatively supporting a Sphaerium  +  Musculium clade suggested by molecular data is only one step longer. Some clades that correspond to the subgeneric divisions of the three traditionally recognized sphaeriid genera are supported. Exclusion is suggested of the taxon Euperidae ( Eupera and Byssodonta , both with ovo-viviparous species) from the true Sphaeriidae that then comprises all species with eu-viviparous reproductive mode, i.e. brooding and nourishing their embryos in specialized brood pouches in the gills. The implications for the reconstruction of the evolutionary history of Sphaeriidae and the availability of existing taxonomic names for the systematization suggested by the present analysis are discussed.  相似文献   

18.
The tubificid clitellates are a common component in the freshwater bottom fauna and are also the most abundant oligochaete group in marine habitats. There are over 800 described species classified in six subfamilies; Tubificinae, Limnodriloidinae, Rhyacodrilinae, Telmatodrilinae, Phallodrilinae, and Naidinae. In this study we examine the phylogenetic relationships in Tubificidae using a combination of mitochondrial 16S rDNA and nuclear 18S rDNA sequence data. Sequences were obtained from five outgroup and 56 ingroup taxa, including five of the six subfamilies of Tubificidae. The data were analysed by maximum parsimony and Bayesian inference. The resulting tree topologies are virtually without conflict. Several associations traditionally recognized within the family Tubificidae are supported, in the Bayesian analysis including a sister group relationship between Tubificinae and Limnodriloidinae. The results also indicate that Rhyacodrilinae is polyphyletic--some of its members (Heterodrilus spp.) fall into a clade with Phallodrilinae, all other groups with Naidinae. Naidinae is also polyphyletic with two rhyacodriline genera, Monopylephorus and Ainudrilus, nested within. Most of the tubificid genera included in the study are supported as monophyletic; however, Tubifex and Limnodriloides are refuted, and Tubificoides is unresolved from other tubificine taxa.  相似文献   

19.
Mitochondrial DNA sequences can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We made phylogenetic analyses of 19 species of Cervidae, with Bos taurus as the outgroup. We used neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods on whole mitochondrial genome sequences. The consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Plesiometacarpalia and Telemetacarpalia, and four tribes, Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. The divergence times in these families were estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock method; the results were consistent with those of previous studies. We concluded that the evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; this method could be used broadly in phylogenetic evolutionary analysis of animal taxa.  相似文献   

20.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号