首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this brief review an attempt has been made to discuss some of the important features of the vascular anatomy of angiospermous leaves, especially those related to assimilate transport. Accordingly, emphasis has been placed on the small or minor veins, which are closely related spatially to the mesophyll, and which play a major role in the uptake and subsequent transport of photosynthates from the leaf. The small veins are enclosed by bundle sheaths that intervene between the mesophyll and vascular tissues and greatly increase the area for contact with mesophyll cells. In the minor veins of dicotyledonous leaves, parenchymatic cells having organelle-rich protoplasts and numerous cytoplasmic connections with sieve elements dominate quantitatively. It is these so-called intermediary cells that apparently are directly involved with the loading of assimilates into the sieve elements. In the maize leaf the small and intermediate bundles have two types of sieve tubes, relatively thin-walled ones that have numerous cytoplasmic connections with companion cells, and thick-walled ones that lack companion cells but have numerous connections with vascular parenchyma cells. The companion cell-sieve tube complexes are virtually isolated symplastically from other cells of the vascular bundle and from the bundle sheath. Thick-walled sieve tubes similar to those in the maize leaf have been recorded in the leaves of other grasses.  相似文献   

2.
In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations the particles tended to assume an orderly arrangement in both parenchyma cells and sieve elements. Most of the sieve elements containing virus particles had mitochondria, plastids, endoplasmic reticulum, and plasma membrane normal for mature sieve elements. Some sieve elements, however, showed evidence of degeneration. Virus particles were present also in the pores of the sieve plates, the plasmodesmata connecting the sieve elements with parenchyma cells, and the plasmodesmata between parenchyma cells. The distribution of the virus particles in the phloem of Beta is compatible with the concept that plant viruses move through the phloem in the sieve tubes and that this movement is a passive transport by mass flow. The observations also indicate that the beet yellows virus moves from cell to cell and in the sieve tube in the form of complete particles, and that this movement may occur through sieve-plate pores in the sieve tube and through plasmodesmata elsewhere.  相似文献   

3.
The vascular system for the two lodicules in a floret of Dactylis glomerata L. was studied in serial sections. The floret stele contained a few modified tracheary elements and xylem transfer cells enveloped by a phloem of squat sieve-tube members and intermediary cells. A single sieve tube and associated phloem parenchyma exited the right and left sides of the stele and upon nearing the base of each lodicule branched and formed the minor veins of the lodicule. The minor veins underwent limited branching and anastomosing to form a small three-dimensional system which described an arc during its ascent in the adaxial portion of each lodicule. The sieve tubes in the minor veins extended halfway up the lodicule and contained short sieve-tube members with transverse, slightly oblique, or lateral simple sieve plates. The associated phloem parenchyma cells were intermediary cells, companion cells, and less intimate parenchyma cells. Intermediary cells terminated the minor veins and touched the distal ends of the terminal sieve-tube members, which lacked distal sieve plates. Although the transverse area of the sieve-tube members remained constant up the lodicule, the transverse area of the associated phloem parenchyma fluctuated.  相似文献   

4.
R. F. Evert  W. Eschrich  W. Heyser 《Planta》1978,138(3):279-294
Small and intermediate (longitudinal) vascular bundles of the Zea mays leaf are surrounded by chlorenchymatous bundle sheaths and consist of one or two vessels, variable numbers of vascular parenchyma cells, and two or more sieve tubes some of which are associated with companion cells. Sieve tubes not associated with companion cells have relatively thick walls and commonly are in direct contact with the vessels. The thick-walled sieve tubes have abundant cytoplasmic connections with contiguous vascular parenchyma cells; in contrast, connections between vascular parenchyma cells and thin-walled sieve tubes are rare. Connections are abundant, however, between the thin-walled sieve tubes and their companion cells; the latter have few connections with the vascular parenchyma cells. Plasmolytic studies on leaves of plants taken directly from lighted growth chambers gave osmotic potential values of about-18 bars for the companion cells and thin-walled sieve tubes (the companion cell-sieve tube complexes) and about-11 bars for the vascular parenchyma cells. Judging from the distribution of connections between various cell types of the vascular bundles and from the osmotic potential values of those cell types, it appears that sugar is actively accumulated from the apoplast by the companion cell-sieve tube complex, probably across the plasmalemma of the companion cell. The thick-walled sieve tubes, with their close spatial association with the vessels and possession of plasmalemma tubules, may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream. The transverse veins have chlorenchymatous bundle sheaths and commonly contain a single vessel and sieve tube. Parenchymatic elements may or may not be present. Like the thick-walled sieve tubes of the longitudinal bundles, the sieve tubes of the transverse veins have plasmalemma tubules, indicating that they too may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream.  相似文献   

5.
The vascular system of the leaf of Populus deltoides Bartr. ex Marsh, was examined quantitatively, and plasmolytic studies were carried out to determine the solute concentrations of sieve-tube members at various locations in the leaf. Both the total number and total crosssectional area of each cell type decreases with decreasing vein size. Although the proportion of phloem occupied by sieve tubes varies considerably from location to location, a linear relationship exists between cross-sectional area of the vascular bundles and both total and mean cross-sectional area of sieve tubes. Collectively, the cross-sectional area of all tertiary and minor veins feeding into a secondary exceeds the total cross-sectional area of sieve tubes at the base of that secondary. Moreover, the total volume of sieve tubes in the “catchment area” of a secondary vein is much greater than the total sieve tube volume of the secondary itself. Both tracheary elements and sieve-tube members undergo a reduction in both total and mean crosssectional area in the constricted zone at the base of the leaf. The plasmolytic studies revealed the presence of positive concentration gradients in sieve tubes of the lamina from the minor veins and tips of the secondaries to the bases of the secondaries and their associated subjacent midvein bundles and from the upper to lower portions of the median bundle of the midvein.  相似文献   

6.
TRIP  P.; COLVIN  J. ROSS 《Annals of botany》1970,34(5):1101-1106
End walls of sieve elements of minor veins of the leaves ofBeta vulgaris L. do not contain the multi-perforate sieve plateswhich typically occur on the end walls of sieve-tube membersof major veins. Instead, both end and side walls of the sieveelements of minor veins contain scattered pores which may occursingly or in small numbers. These pores are similar to thosewhich are grouped in sieve plates of major veins in size, possessionof callose and plugs of filaments. In addition to these pores,there are tubular connections 0.1 µ in diameter throughcharacteristically thickened parts of the cell wall betweensieve cells and companion cells. Sieve elements of minor veinsdiffer from those of major veins in structure as well as infunction.  相似文献   

7.
The vascular system of the leaf of Amaranthus retroflexus L. was examined quantitatively, and plasmolytic studies were carried out on it to determine the solute concentration in cells of the phloem at various locations in the leaf. The proportion of phloem occupied by sieve tubes varies considerably with vein size and leaf size. Collectively, the cross-sectional area of sieve tubes of all tributaries at their points of entry into either a secondary or midvein far exceeds the total cross-sectional area of sieve tubes at the bases of those major veins. In addition, the total volume of sieve tubes in the “catchment area” of a secondary vein is much greater than total sieve-tube volume of the secondary vein itself. The plasmolytic studies revealed the presence of positive concentration gradients in the sieve tubes of the lamina from the minor veins and tips of the secondaries to the bases of the secondaries and from the tip to the base of the midvein. The C50 (the estimated mannitol concentration plasmolyzing, on the average, 50% of the sieve-tube members) was 1.5 m for minor veins and tips of secondary veins and 1.1 m for the bases of secondaries; 1.3 m for the tip of the midvein and 0.6-0.7 m for the midvein in the basal third of the lamina.  相似文献   

8.
运用CF输导方法确定正在进行库源转换的叶片。采用铅沉淀法对蚕豆(Vicia faba)幼嫩叶片、库源转换叶的库区和源区的小叶脉组织细胞进行了ATP酶和酸性磷酸酶的细胞化学定位。结果显示, 在蚕豆幼嫩叶片的小叶脉中, 传递细胞质膜和细胞壁上存在大量的ATP酶和酸性磷酸酶的标记产物。在库源转换叶库区传递细胞和筛分子质膜上ATP酶和酸性磷酸酶的标记较弱。在库源转换叶的源区传递细胞和筛分子质膜存在较强的ATP酶和酸性磷酸酶的活性反应产物。在小叶脉分化中的木质部分子存在较强的ATP酶和酸性磷酸酶的活性标记, 在分化成熟的木质部分子酶的标记显著减弱。实验结果表明, 依据不同的发育阶段, ATP酶和酸性磷酸酶的含量在蚕豆小叶脉的不同细胞中呈动态变化。据此, 对ATP酶和酸性磷酸酶在蚕豆小叶脉细胞分化和质外体装载中的作用进行了讨论。  相似文献   

9.
Evidence for two pathways of phloem loading   总被引:2,自引:0,他引:2  
The minor veins of small leaf discs, punched out of mature leaves and incubated in 14C-sucrose solution, appear labeled in macro- and microautoradiographs. Discs with a labeled vein pattern and with labeled sieve tubes in microautoradiographs were found in Beta vulgaris, Vicia faba, Gomphrena globosa and Antirrhinum majus . However, in several other plant species, minor veins appeared unlabeled in macroautoradiographs when the discs were incubated in 14C-sucrose. Mesophyll cells ( Acer pseudoplatanus, Juglans regia, Fagia, sylvatica, Syringa vulgaris, Laburnum anagyroides ), bundle-sheath cells of major veins ( Salix viminalis, Robinia pseudoacacia, Commelina communis ) or epidermal layers ( Ginkgo biloba, Chlorophytum comosum ) appeared labeled. Lack of radioactivity in sieve tubes of this latter group was confirmed by microauto-radiography. Using 14C-glucose instead of 14C-sucrose, leaf discs of Beta vulgaris showed no labeled vein pattern and in microautoradiographs the sieve tubes appeared unlabeled. In view of the by-pass phloem loading, this study provides evidence for two pathways of phloem loading.  相似文献   

10.
The ultrastructure of minor veins of Beta vulgaris was examined with reference to possible models for vein loading of translocate. Structural evidence was reviewed in the light of recent physiological observations as a basis for proposed mechanisms. Features which appeared to be of significance in formulating a model included the open, differentiated sieve plates, the predominance of organelle-rich parenchyma cells, and the branched plasmodesmata connecting sieve tubes and parenchyma cells. The resulting model views cell to cell movement of photosynthate via the symplast to the specialized parenchyma cells. The actively accumulated sucrose appears to move from the specialized parenchyma cells into the sieve tubes via plasmodesmata in the lateral and end walls.  相似文献   

11.
Summary The structure of the phloem was studied in stem and leaf ofArtemisia afra Jacq., with particular attention being given to the sieve element walls. Both primary and secondary sieve elements of stem and midvein have nacreous walls, which persist in mature cells. Histochemical tests indicated that the sieve element wall layers contained some pectin. Sieve element wall layers lack lignin. Sieve elements of the minor veins (secondary and tertiary veins) lack nacreous thickening, although their walls may be relatively thick. These walls and those of contiguous transfer cells are rich in pectic substances. Transfer cell wall ingrowths are more highly developed in tertiary than in secondary veins.  相似文献   

12.
Summary The minor veins ofCucurbita pepo leaves were examined as part of a continuing study of leaf development and phloem transport in this species. The minor veins are bicollateral along their entire length. Mature sieve elements are enucleate and lack ribosomes. There is no tonoplast. The sieve elements, which are joined to each other by sieve plates, contain mitochondria, plastids and endoplasmic reticulum as well as fibrillar and tubular (190–195 diameter) P-protein. Fibrillar P-protein is dispersed in mature abaxial sieve elements but remains aggregated as discrete bodies in mature adaxial sieve elements. In both abaxial and adaxial mature sieve elements tubular P-protein remains undispersed. Sieve pores in abaxial sieve elements are narrow, lined with callose and are filled with P-protein. In adaxial sieve elements they are wide, contain little callose and are unobstructed. The intermediary cells (companion cells) of the abaxial phloem are large and dwarf the diminutive sieve elements. Intermediary cells are densely filled with ribosomes and contain numerous small vacuoles and many mitochondria which lie close to the plasmalemma. An unusually large number of plasmodesmata traverse the common wall between intermediary cells and bundle sheath cells suggesting that the pathway for the transport of photosynthate from the mesophyll to the sieve elements is at least partially symplastic. Adaxial companion cells are of approximately the same diameter as the adaxial sieve elements. They are densely packed with ribosomes and have a large central vacuole. They are not conspicuously connected by plasmodesmata to the bundle sheath.  相似文献   

13.
Haritatos E  Medville R  Turgeon R 《Planta》2000,211(1):105-111
Leaf and minor vein structure were studied in Arabidopsis thaliana (L.) Heynh. to gain insight into the mechanism(s) of phloem loading. Vein density (length of veins per unit leaf area) is extremely low. Almost all veins are intimately associated with the mesophyll and are probably involved in loading. In transverse sections of veins there are, on average, two companion cells for each sieve element. Phloem parenchyma cells appear to be specialized for delivery of photoassimilate from the bundle sheath to sieve element-companion cell complexes: they make numerous contacts with the bundle sheath and with companion cells and they have transfer cell wall ingrowths where they are in contact with sieve elements. Plasmodesmatal frequencies are high at interfaces involving phloem parenchyma cells. The plasmodesmata between phloem parenchyma cells and companion cells are structurally distinct in that there are several branches on the phloem parenchyma cell side of the wall and only one branch on the companion cell side. Most of the translocated sugar in A. thaliana is sucrose, but raffinose is also transported. Based on structural evidence, the most likely route of sucrose transport is from bundle sheath to phloem parenchyma cells through plasmodesmata, followed by efflux into the apoplasm across wall ingrowths and carrier-mediated uptake into the sieve element-companion cell complex. Received: 5 October 1999 / Accepted: 20 November 1999  相似文献   

14.
Summary Standard lead precipitation procedures have been used to examine the localization of ATPase activity in phloem tissues ofRicinus communis. Reaction product was localized on the plasma membrane of the companion cells associated with sieve elements and of parenchyma cells in phloem tissues from the leaf, petiole, stem and root. ATPase activity was also present on the plasma membrane and dispersed P-protein of sieve elements in petiole, stem and root tissue, but was absent from the plasma membrane of these cells in the leaf minor veins. Substitution of-glycerophosphate for ATP produced no change in the localization of reaction product in leaf tissue. These findings are discussed in relation to current theories on the mechanism of sugar transport and phloem loading.  相似文献   

15.
Quantitative data on sieve tubes in foliar terminal veins (vein endings) were added to the meager published information from only five dicot species. Correlations with other minor vein configurations were also explored. Leaf samples from ten species of dicots (Oxalis nelsonii, O. pes-capri, O. rubra, O. stricta [Oxalidaceae], Caesalpinia pulcherrima. Glycine max, Trifolium repens [Leguminosae], Ampelamus albidus [Asclepidaceae], Eupatorium rugosum [Asteraceae], and Polygonum convolvulus [Polygonaceae]) were selected for two quantitative procedures: 1) a survey of the arrangement of terminal veins and distribution of sieve tubes in terminal veins in 100 areoles per species using stained leaf clearings; and 2) a search for correlations of sieve tube distribution with number and branching patterns of terminal veins, and with sizes of areoles using image analysis. Two Oxalis species (O. pes-capri and O. stricta) had the smallest areoles and virtually no sieve tubes in any terminal vein. Polygonum convolvulus, at the other extreme, had sieve tubes extending to the tips of most terminal veins. The other species had various intermediate sieve tube configurations. The data indicate that species with few or no sieve tubes associated with their terminal veins, regardless of the number of terminal veins per areole, have smaller areoles. These results may have implications regarding the entry of leaf photosynthates into the vascular system.  相似文献   

16.
The rate of phloem loading, its selectivity, and the disposition of labeled carbon were studied following application of (14)C-labeled sugars to the free space of source leaves of sugar beet (Beta vulgaris L.). Buffered 10 mm solutions of (14)C-labeled sucrose, fructose, stachyose, mannitol, 3-0-methyl glucose or l-glucose were applied to the abraded epidermis of source leaves held in the dark. Distribution of the labeled carbon from sugar taken up from the free space was studied by micro-densitometry of autoradiographs. Uptake of labeled sugar from the free space, partition between mesophyll and minor veins, metabolic conversions, export and respiration were followed during the 3-hr time course studies. Rates of sugar uptake into the minor veins, flux rates through the sieve element-companion cell complex membrane and concentration ratios between free space and the interior of the minor vein phloem cells were compared for the six sugars studied for evidence of active uptake. The composition of the free space solution in leaves photosynthesizing in (14)CO(2) was studied by vacuum infiltration of the source leaf air spaces and removal of the solution by centrifugation. Labeled compounds in this solution were compared to those in an aqueous ethanol extract of the same leaf pieces.The results in sugar beet source leaves support the concept of direct, active uptake of sucrose from free space into minor veins. This is not the case for fructose, 3-0-methyl glucose, mannitol, or stachyose. The latter two sugars, which are translocated in some plants, are not loaded into the minor veins at a rate sufficient to make them a significant component of the material translocated. The rate of phloem loading is controlled in part by mesophyll metabolism, especially as it affects the availability of sucrose to the free space. Both the rate and selectivity of export are controlled by uptake from the free space into the sieve element-companion cell complex of the minor veins.  相似文献   

17.
Summary Mesophyll containing the minor veins from leaves ofTetragonia expansa Murr. was examined in preparation for a study of effects of beet yellows virus on the leaf tissues of this plant. The sieve elements throughout the minor veins exhibit the characteristics commonly found in this type of cell in dicotyledons. The cells are connected with one another by sieve plates and with contiguous parenchyma cells by branched plasmodesmata. Mature sieve elements are enucleate and lack ribosomes. No tonoplast was discerned in these cells. Mitochondria, plastids, and sparse endoplasmic reticulum are retained in mature cells. The plastids, which contain a massive fibrous ring of proteinaceous material, resemble the sieve element plastids ofBeta. The P-protein in the sieve elements is occasionally composed of tubules; more commonly it is represented by loose helices. The tracheary elements have scalariform secondary thickenings. In regions free of these thickenings, the primary wall largely disintegrates; only some loosely arranged fibrils remain. The mesophyll and vascular parenchyma cells contain the various organelles characteristic of living plant cells but vary in degree of vacuolation and in density of cytoplasm. Some vascular parenchyma cells have particularly dense protoplasts. They contain numerous ribosomes and their background matrix consists of a dense population of fine fibrils. Occasional vascular parenchyma cells contain the tubular spiny cell component first recognized inBeta. This work was supported in part by National Science Foundation grant GB-5506.  相似文献   

18.
Abstract The time course of loading and transport of assimilate in sunflower leaves was examined by pulse labelling with 14CO2, followed by freeze drying or freeze substitution, and dry autoradiography at both low and high resolution. The five classes of veins, V1-V5 (V5 being smallest), show a division of function: V5 and V4 are engaged in loading and short distance transport; V3 to V1, in long distance translocation. The first high concentration of 14C is found in two or three phloem parenchyma cells (intermediary cells) of V5 and V4 veins. The sieve elements of V5 and V4 veins do not show comparable concentrations of 14C at any time. Recently assimilated 14C is transported by the intermediary cells for distances of about 0.5 mm to the V3 veins. In V3 to V1 veins translocation is in the sieve tubes. Transport in V5 and V4 veins is in two directions, that in V3 to V1, in one direction towards the petiole. The high concentration of 14C formed in the intermediary cells does not increase further as the assimilate moves to the sieve tubes of the V3 veins, and so is probably the origin of the gradient that drives translocation.  相似文献   

19.
The minor veins and contiguous tissues of mature leaves of Populus deltoides Bartr. ex Marsh. were examined with the electron microscope to determine the ultrastructural characteristics of the component cells and to determine the structure, distribution, and frequency of plasmodesmata between the various cell types. In addition, plasmolytic studies were carried out to determine the solute concentrations of the various cell types of the minor veins and contiguous tissues. The cells comprising the mesophyll and bundle sheath contain all the components typical of photosynthetic cells. Paraveinal mesophyll cells and bundle-sheath cells have fewer microbodies and smaller chloroplasts than do palisade parenchyma cells. Vascular parenchyma and companion cells tend to intergrade with one another structurally but can be distinguished from one another by their characteristic plastids. The mature, enucleate sieve-tube member is lined by a parietal layer of cytoplasm consisting of plasmalemma, endoplasmic reticulum, mitochondria, plastids, and P-protein. Plasmodesmata occur along all possible routes from the palisade parenchyma cells to the sieve tubes of the minor veins, and their frequency increases with increasing proximity to the sieve-tube members. Plasmolytic studies revealed that the paraveinal mesophyll cells had a higher C50 (estimated mannitol concentration plasmolyzing, on the average, 50% of a given cell type) than any other cell type of the leaf. Concentration gradients existed along the palisade cell/bundle-sheath cell/companion cell (or vascular parenchyma cell) route as well as along the paraveinal mesophyll cell/bundle-sheath cell/companion cell (or vascular parenchyma cell) route. Considering the frequency of plasmodesmata along these routes, it is conceivable that photosynthate diffuses from palisade cells to the companion cells along concentration gradients. Within the minor veins, the C50 was higher for sieve-tube members than for either companion cells or vascular parenchyma cells, indicating that loading of the sieve tubes is an active, energy-dependent process.  相似文献   

20.
Summary A study of the fine structure of minor veins of mature leaves of 975 species and 242 families of Angiosperms shows that transfer cells are widespread amongst herbaceous Dicotyledons, are much rarer in woody Dicotyledons, and are virtually absent from the Monocotyledons. The evolutionary significance of the distribution of the cells amongst and within orders, families and minor groupings is discussed.Four types of transfer cell are recognized in minor veins, all possessing irregular ingrowths of wall material protruding into their protoplasts, and all being regarded as modified parenchyma of the minor vein. Two types occur in phloem. One (the A-cell), with ingrowths distributed right round its periphery, is associated specifically with the sieve elements. The other (the B-cell) occurs more generally throughout the phloem and has zones of wall ingrowths oriented towards sieve elements and their associated companion cells or A-cells. Two other types (C- and D-cells) occur in xylem parenchyma and bundle sheath respectively, and have ingrowths only on walls in contact with or in close proximity to vessels or tracheids. Each species has a characteristic combination of types of transfer cell. The variations encountered in the survey are classified. Consistent differences in the frequency and form of ingrowths are to be found between the different types of transfer cell of a single species, and between different species in respect to a particular type of transfer cell.The functional significance of transfer cells in minor veins is discussed in relation to the loading and unloading of the conducting elements and to the retrieval of extra-cytoplasmic solutes from the mesophyll and the transpiration stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号