首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas putida Idaho utilizes toluene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, and 3-ethyltoluene as growth substrates when these hydrocarbons are provided in a two-phase system at 5 to 50% (vol/vol). Growth also occurs on Luria-Bertani medium in the presence of a wide range of organic solvents. The ability of the organism to grow in the presence of organic solvents is correlated with the logarithm of the octanol-water partition coefficient, with dimethyl-phthalate (log P(OCT) = 2.3) being the most polar solvent tolerated. During growth with p-xylene (20% [vol/vol]), there was an initial lag period accompanied by cell death, which was followed by a period of exponential growth. The stationary phase of growth was characterized by a dramatic decrease in cell viability, although cell dry weight and turbidity measurements slowly increased. Electron micrographs revealed that during growth in the presence of p-xylene, the outer cell membrane becomes convoluted and membrane fragments are shed into the culture medium. At the same time, the cytoplasmic membrane invaginates, forming vesicles, and becomes disorganized. Electron-dense intracellular inclusions were observed in cells grown with p-xylene (20% [vol/vol]) and p-xylene vapors, which are not present in cells grown with succinate. Attempts to demonstrate the presence of plasmid DNA in P. putida Idaho were negative. However, polarographic studies indicated that the organism utilizes the same pathway for the degradation of toluene, m-xylene, and p-xylene as that used by P. putida mt-2 which contains the TOL plasmid pWWO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pseudomonas putida Idaho utilizes toluene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, and 3-ethyltoluene as growth substrates when these hydrocarbons are provided in a two-phase system at 5 to 50% (vol/vol). Growth also occurs on Luria-Bertani medium in the presence of a wide range of organic solvents. The ability of the organism to grow in the presence of organic solvents is correlated with the logarithm of the octanol-water partition coefficient, with dimethyl-phthalate (log P(OCT) = 2.3) being the most polar solvent tolerated. During growth with p-xylene (20% [vol/vol]), there was an initial lag period accompanied by cell death, which was followed by a period of exponential growth. The stationary phase of growth was characterized by a dramatic decrease in cell viability, although cell dry weight and turbidity measurements slowly increased. Electron micrographs revealed that during growth in the presence of p-xylene, the outer cell membrane becomes convoluted and membrane fragments are shed into the culture medium. At the same time, the cytoplasmic membrane invaginates, forming vesicles, and becomes disorganized. Electron-dense intracellular inclusions were observed in cells grown with p-xylene (20% [vol/vol]) and p-xylene vapors, which are not present in cells grown with succinate. Attempts to demonstrate the presence of plasmid DNA in P. putida Idaho were negative. However, polarographic studies indicated that the organism utilizes the same pathway for the degradation of toluene, m-xylene, and p-xylene as that used by P. putida mt-2 which contains the TOL plasmid pWWO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

4.
Pseudomonas putida BG1 was isolated from soil by enrichment with p-toluate and selection for growth with p-xylene. Other hydrocarbons that served as growth substrates were toluene, m-xylene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The enzymes responsible for growth on these substrates are encoded by a large plasmid with properties similar to those of TOL plasmids isolated from other strains of Pseudomonas. Treatment of P. putida BG1 with nitrosoguanidine led to the isolation of a mutant strain which, when grown with fructose, oxidized both p-xylene and p-toluate to (-)-cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylic acid (cis-p-toluate diol). The structure of the diol was determined by conventional chemical techniques including identification of the products formed by acid-catalyzed dehydration and characterization of a methyl ester derivative. The cis-relative stereochemistry of the hydroxyl groups was determined by the isolation and characterization of an isopropylidene derivative. p-Xylene-grown cells contained an inducible NAD+-dependent dehydrogenase which formed catechols from cis-p-toluate diol and the analogous acid diols formed from the other hydrocarbon substrates listed above. The catechols were converted to meta ring fission products by an inducible catechol-2,3-dioxygenase which was partially purified from p-xylene-grown cells of P. putida BG1.  相似文献   

5.
A strain of Pseudomonas putida (TMB) was found to resemble P. putida mt-2 (PaW1) in its ability to degrade 1,2,4-trimethylbenzene, toluene, m-xylene, and p-xylene via oxidation of a methyl substituent and reaction of the meta fission pathway, but a different regulatory model is suggested. The ability of P. putida TMB to degrade these substrates was encoded by plasmid pGB (85 kilobase pairs), which showed considerable differences in size, restriction patterns, and DNA sequence from those of plasmid pWWO of strain PaW1.  相似文献   

6.
Isolation of a Pseudomonas stutzeri strain that degrades o-xylene   总被引:3,自引:0,他引:3  
A Pseudomonas stutzeri strain capable of growing on o-xylene was isolated from enrichment cultures. The organism grew on 2,3- and 3,4-dimethylphenol but not on 2-methylbenzyl alcohol, o-tolualdehyde, or o-toluate. P. stutzeri was not able to utilize m-xylene, p-xylene, or 1,2,4-trimethylbenzene, but growth was observed in the presence of the corresponding alcohols and acids. From the Pseudomonas cultures supplied with o-xylene, 2,3-dimethylphenol was isolated and identified. When resting P. stutzeri cells were incubated with 2,3-dimethylphenol, the reaction mixture turned greenish yellow and showed spectral properties identical to those of the 3,4-dimethylcatechol meta ring fission product. Catechol 2,3-oxygenase was induced by growth on o-xylene or on 2,3- or 3,4-dimethylphenol. The suggested hypothesis is that the first metabolic steps of growth on o-xylene involve the direct oxygenation of the aromatic nucleus, followed by meta pathway reactions.  相似文献   

7.
Isolation of a Pseudomonas stutzeri strain that degrades o-xylene.   总被引:8,自引:8,他引:0       下载免费PDF全文
A Pseudomonas stutzeri strain capable of growing on o-xylene was isolated from enrichment cultures. The organism grew on 2,3- and 3,4-dimethylphenol but not on 2-methylbenzyl alcohol, o-tolualdehyde, or o-toluate. P. stutzeri was not able to utilize m-xylene, p-xylene, or 1,2,4-trimethylbenzene, but growth was observed in the presence of the corresponding alcohols and acids. From the Pseudomonas cultures supplied with o-xylene, 2,3-dimethylphenol was isolated and identified. When resting P. stutzeri cells were incubated with 2,3-dimethylphenol, the reaction mixture turned greenish yellow and showed spectral properties identical to those of the 3,4-dimethylcatechol meta ring fission product. Catechol 2,3-oxygenase was induced by growth on o-xylene or on 2,3- or 3,4-dimethylphenol. The suggested hypothesis is that the first metabolic steps of growth on o-xylene involve the direct oxygenation of the aromatic nucleus, followed by meta pathway reactions.  相似文献   

8.
Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers-polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.  相似文献   

9.
Thirteen bacteria have been isolated from nine different soil samples by selective enrichment culture on m-toluate (m-methylbenzoate) minimal medium. Eight of these were classified as Pseudomonas putida, one as a fluorescent Pseudomonas sp., and four as nonfluorescent Pseudomonas sp. All 13 strains appeared to carry TOL plasmids superficially similar to that previously described in P. putida mt-2 in that: (i) all the wild-type strains could utilize toluene, m-xylene, and p-xylene as sole carbon and energy sources, (ii) these growth substrates were metabolized through the corresponding alcohols and aldehydes to benzoate, m-toluate, and p-toluate, respectively, and thence by the divergent meta (or alpha-ketoacid) pathway, and (iii) the isolates could simultaneously and spontaneously lose their ability to utilize the hydrocarbons, alcohols, aldehydes, and acids, particularly during growth on benzoate, giving rise to cured strains which could grow only on benzaldehyde and benzoate of the aromatic substrates by the alternative ortho (or beta-ketoadipate) pathway. Eight of the isolates were able to transfer their TOL plasmids into their own cured strains, but only five were able to transfer them in interstrain conjugation into the cured strains, but only five were able to transfer them in interstrain conjugation into the cured derivative of P. putida mt-2. However, P. putida mt-2 was able to transfer its TOL plasmid into 11 of the cured isolates, and eight of these were able to retransmit this foreign plasmid in intrastrain conjugation with their own cured derivatives. Three of the isolates, MT 14, MT 15, and MT 20, differed significantly from the others in that the wild-type strains dissimilated the p-methyl-substituted substrates poorly, and also, during growth on benzoate, in addition to the cured derivatives, they gave rise to derivatives with a phenotype intermediate between the cured and wild-type strains, the biochemical and genetic nature of which has not been elucidated.  相似文献   

10.
Pseudomonas Pxy was isolated on p-xylene as sole source of carbon and energy. Substrates that supported growth were toluene, p-methylbenzyl alcohol, p-tolualdehyde, p-toluic acid, and the analogous m-methyl derivatives, including m-xylene. Cell extracts prepared from Pseudomonas Pxy after growth with either p-xylene or m-xylene oxidized the p- and m-isomers of tolualdehyde as well as p-methylbenzyl alcohol. The same cell extracts also catalyzed a "meta" fission of both 3- and 4-methylcatechol. Treatment of Pseudomonas Pxy with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of two mutant strains. Pseudomonas Pxy-40, when grown on succinate in the presence of p-xylene, accumulated p-toluic acid in the culture medium. Under the same conditions Pseudomonas Pxy-82 accumulated p-toluic acid and also 4-methylcatechol. When Pseudomonas Pxy-82 was grown on succinate in the presence of m-xylene, 3-methylcatechol and 3-methylsalicylic acid were excreted into the culture medium. A pathway is proposed for the initial reactions utilized by Pseudomonas Pxy to oxidize p- and m-xylene.  相似文献   

11.
A common pathway of sulfide oxidation by sulfate-reducing bacteria   总被引:4,自引:0,他引:4  
Abstract Pseudomonas putida strain DMB capable of growing on 3,4-dimethylbenzoic acid as the only C and energy source was isolated by enrichment techniques. It does not utilize for growth or cooxidize the other dimethylbenzoate isomers tested. 3,4-Dimethylsalicylic acid, 3,4-dimethylphenol and 3,4-dimethylcatechol were isolated and identified by nuclear magnetic resonance and mass spectra in the reaction mixture of P. putida washed cells. The detection of the two first metabolites suggests that the initial step in the degradation of 3,4-dimethylbenzoic acid is the formation of 3,4-dimethylcyclohexa-3,5-diene-1, 2-diol-1-carboxylic acid which underwent an acid-catalyzed dehydration yielding 3,4-dimethylsalicylic acid and 3,4-dimethylphenol. Further degradation proceeds through 3,4-dimethylcatechol via the meta pathway.  相似文献   

12.
Pseudomonas putida mt-2 carries a plasmid (TOL, pWWO) which codes for a single set of enzymes responsible for the catabolism of toluene and m- and p-xylene to central metabolites by way of benzoate and m- and p-toluate, respectively, and subsequently by a meta cleavage pathway. Characterization of strains with mutations in structural genes of this pathway demonstrates that the inducers of the enzymes responsible for further degradation of m-toluate include m-xylene, m-methylbenzyl alcohol, and m-toluate, whereas the inducers of the enzymes responsible for oxidation of m-xylene to m-toluate include m-xylene and m-methylbenzyl alcohol but not m-toluate. A regulatory mutant is described in which m-xylene and m-methylbenzyl alcohol no longer induce any of the pathway enzymes, but m-toluate is still able to induce the enzymes responsible for its own degradation. Among revertants of this mutant are some strains in which all the enzymes are expressed constitutively and are not further induced by m-xylene. A model is proposed for the regulation of the pathway in which the enzymes are in two regulatory blocks, which are under the control of two regulator gene products. The model is essentially the same as proposed earlier for the regulation of the isofunctional pathway on the TOL20 plasmid from P. putida MT20.  相似文献   

13.
A. Haner  P. Hohener    J. Zeyer 《Applied microbiology》1997,63(3):1171-1174
A microbial culture enriched from a diesel fuel-contaminated aquifer was able to grow on 1,3,5-trimethylbenzene (1,3,5-TMB) and 1,2,4-TMB under N(inf2)O-reducing conditions, but it did not degrade 1,2,3-TMB. The oxidation of 1,3,5-TMB to CO(inf2) was coupled to the production of biomass and the reduction of N(inf2)O. N(inf2)O was used to avoid toxic effects caused by NO(inf2)(sup-) accumulation during growth with NO(inf3)(sup-) as the electron acceptor. In addition to 1,3,5-TMB and 1,2,4-TMB, the culture degraded toluene, m-xylene, p-xylene, 3-ethyltoluene, and 4-ethyltoluene.  相似文献   

14.
Abstract 3,4-Dimethylbenzoic acid and 3,5-dimethylbenzoic acid were both oxidised by 4-methylbenzoate ( p -toluate)-grown cells of Rhodococcus rhodochrous N75 via the ortho -pathway through the intermediates 3,4- and 3,5-dimethylcatechol, respectively. Owing to the formation of the two novel dead-end metabolites, 4-carboxymethyl-2,3-dimethylbut-2-en-1,4-olide and 4-carboxymethyl-2,4-dimethylbut-2-en-1,4-olide from these substrates, 3,4- and 3,5-dimethylbenzoate did not serve as growth substrates for the strain.  相似文献   

15.
J Y Lee  K H Jung  S H Choi    H S Kim 《Applied microbiology》1995,61(6):2211-2217
Construction of a hybrid strain which is capable of mineralizing components of a benzene, toluene, and p-xylene mixture simultaneously was attempted by redesigning the metabolic pathway of Pseudomonas putida. Genetic and biochemical analyses of the tod and the tol pathways revealed that dihydrodiols formed from benzene, toluene, and p-xylene by toluene dioxygenase in the tod pathway could be channeled into the tol pathway by the action of cis-p-toluate-dihydrodiol dehydrogenase, leading to complete mineralization of a benzene, toluene, and p-xylene mixture. Consequently, a hybrid strain was constructed by cloning todC1C2BA genes encoding toluene dioxygenase on RSF1010 and introducing the resulting plasmid into P. putida mt-2. The hybrid strain of P. putida TB105 was found to mineralize a benzene, toluene, and p-xylene mixture without accumulation of any metabolic intermediate.  相似文献   

16.
Xylene monooxygenase of Pseudomonas putida mt-2 catalyzes multistep oxidations of one methyl group of toluene and xylenes. Recombinant Escherichia coli expressing the monooxygenase genes xylM and xylA catalyzes the oxygenation of toluene, pseudocumene, the corresponding alcohols, and the corresponding aldehydes, all by a monooxygenation type of reaction (B. Bühler, A. Schmid, B. Hauer, and B. Witholt, J. Biol. Chem. 275:10085-10092, 2000). Using E. coli expressing xylMA, we investigated the kinetics of this one-enzyme three-step biotransformation. We found that unoxidized substrates like toluene and pseudocumene inhibit the second and third oxygenation steps and that the corresponding alcohols inhibit the third oxygenation step. These inhibitions might promote the energetically more favorable alcohol and aldehyde dehydrogenations in the wild type. Growth of E. coli was strongly affected by low concentrations of pseudocumene and its products. Toxicity and solubility problems were overcome by the use of a two-liquid-phase system with bis(2-ethylhexyl)phthalate as the carrier solvent, allowing high overall substrate and product concentrations. In a fed-batch-based two-liquid-phase process with pseudocumene as the substrate, we observed the consecutive accumulation of aldehyde, acid, and alcohol. Our results indicate that, depending on the reaction conditions, product formation could be directed to one specific product.  相似文献   

17.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight] h). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

18.
From an o-xylene-degrading Pseudomonas stutzeri strain (OX1), we previously isolated mutant M1, which had acquired the ability to grow on m-xylene and p-xylene but lost the ability to utilize the ortho isomer. From M1 cultures we have now isolated a revertant strain (R1) which grows on o-xylene and retains the ability to grow with the meta and para isomers regardless of the selective pressure applied. In P. stutzeri R1, o-xylene is degraded through two successive monooxygenations of the aromatic ring, while m-xylene and p-xylene catabolism proceeds through the progressive oxidation of a methyl substituent, although unquantifiable amounts of these two substrates are transformed into the corresponding dimethylphenols, which are not utilized for further growth. The two catabolic pathways are inducible by all three xylene isomers.  相似文献   

19.
Pseudomonas putida T-57 was isolated from an activated sludge sample after enrichment on mineral salts basal medium with toluene as a sole source of carbon. P. putida T-57 utilizes n-butanol, toluene, styrene, m-xylene, ethylbenzene, n-hexane, and propylbenzene as growth substrates. The strain was able to grow on toluene when liquid toluene was added to mineral salts basal medium at 10-90% (v/v), and was tolerant to organic solvents whose log P(ow) (1-octanol/water partition coefficient) was higher than 2.5. Enzymatic and genetic analysis revealed that P. putida T-57 used the toluene dioxygenase pathway to catabolize toluene. A cis-toluene dihydrodiol dehydrogenase gene (todD) mutant of T-57 was constructed using a gene replacement technique. The todD mutant accumulated o-cresol (maximum 1.7 g/L in the aqueous phase) when cultivated in minimal salts basal medium supplemented with 3% (v/v) toluene and 7% (v/v) 1-octanol. Thus, T-57 is thought to be a good candidate host strain for bioconversion of hydrophobic substrates in two-phase (organic-aqueous) systems.  相似文献   

20.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C120) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C230) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号