首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quaternary structure of ribulose-1, 5-bisphosphate (RuP2) carboxylase from the autotrophically grown cells of blue-green alga, Anabaena cylindrica, was studied. Sedimentation coefficient (s20, w) of the enzyme was determined to be 18.3 S by the sucrose density gradient centrifugation. The molecular weight was estimated to be 5.0 × 105 by the Sepharose 4B gel filtration technique. The purification of the enzyme from the algal cells was undertaken by means of sucrose density gradient centrifugation and DEAE-Sephadex A–50 ion-exchange column chromatography, and the structural make-up of the enzyme containing two subunits, A (M. W., 5.2 × 104) and B (M. W., 1.2 × 104) was established by the Na-dodecylsulfate polyacrylamide gel electrophoresis experiment. Structural similarity of the algal RuP2carboxylase with the spinach enzyme was further demonstrated by the Ouchterlony double immunodiffusion experiment.  相似文献   

2.
Studies on the mechanism of DNA replication in Physarum polycephalum   总被引:5,自引:0,他引:5  
The synthesis of single-stranded DNA subunits (4 × 107 daltons) in Physarum polycephalum was studied by alkaline sucrose density gradient centrifugation. The results were compared with the synthesis of the double-stranded DNA molecules (2.3 × 108 daltons) which they comprise, as determined from neutral sucrose density gradient centrifugation patterns. Although the initiation of synthesis of most double-stranded DNA molecules takes place relatively early in the S period, synthesis of the subunits within them is initiated throughout at least the first two hours of this period. Similarly, replicating (presumably forked) DNA molecules appear to split into daughter DNA molecules prior to the completion of synthesis of the subunits therein. The average rate of DNA chain elongation within subunits is 0.3 × 106 daltons/minute. It is suggested that alkaline sucrose density gradient centrifugation may be a more sensitive method for determining the time required for the completion of replication than other methods based solely on the incorporation of radioactive DNA precursors into an acid-insoluble product.  相似文献   

3.
The molecular weights, diffusion coefficients, and sedimentation coefficients of mevalonate kinase in partially purified preparations from Hevea brasiliensis latex, Cucumis melo cotyledons, Phaseolus vulgaris cotyledons, bakers yeast, chicken liver, and rabbit liver have been determined by gel filtration in Sephadex G-100 and G-200 and by sucrose density gradient centrifugation. The enzyme had similar molecular weights (94800–103500), diffusion coefficients (5.39–5.62 × 10?7 cm2/sec), and sedimentation coefficients (5.85–6.00 S) in the six preparations.  相似文献   

4.
The DNA containing the genes for rRNA (commonly called rDNA) of Tetrahymena sediments in sucrose density gradients considerably slower than the main part of the DNA when DNA from gently lysed whole cells or isolated nuclei are fractionated by this method. In rDNA purified by CsCl gradient centrifugation about 20% of the DNA (40% of the bases in one strand) consists of sequences homologous to 25S and 17S rRNA as determined by DNA-RNA hybridization. The purified rDNA co-sediments in sucrose gradients with Ø29 phage DNA (M.W. = 11 × 106). Examination by electron microscopy of the rDNA demonstrates that the molecules are linear with a length of 5.65 ±0.6 μm corresponding to a molecular weight of 11 × 106.  相似文献   

5.
An apparent oligomer of malate dehydrogenase from bean leaves   总被引:2,自引:1,他引:1       下载免费PDF全文
Two forms of malate dehydrogenase of widely differing molecular weight have been examined from primary leaves of Phaseolus vulgaris. In addition to the normal 69,000 molecular weight enzyme, an unusual form of 280,000 molecular weight may be detected by sucrose density gradient centrifugation or gel filtration with Sephadex G-200. Isopycnic density gradient centrifugation showed that both forms of malate dehydrogenase differed markedly from the bulk of the leaf protein by their low bouyant density of 1.261 g/cm3.  相似文献   

6.
Cartilage proteoglycan was isolated from bovine nasal septum and fractionated according to buoyant density after dissociative CsCl density gradient centrifugation. Gel-exclusion chromatography showed that hyaluronic acid was present in fractions of density lower than 1.69 g/mL. The molecular weight, assessed by sedimentation equilibrium analysis, of the proteoglycan present in the fractions with density > 1.69 g/mL, which appeared chromatographically homogeneous and constituted 54% of the preparation, ranged from 1.0 to 2.6 × 106 for v = 0.55 cm3 g?1. Carbodiimide-induced modification of the carboxyl groups by methylamine resulted in a reduction of the molecular weight to 0.74 – 1.25 × 106. An analogous reduction in molecular weight was obtained after equilibration of this proteoglycan fraction with hyaluronic acid oligomers containing five disaccharide units. Since both procedures are known to cause inhibition of the interaction between proteoglycans and hyaluronic acid, it is suggested that this lower molecular-weight range represents the true degree of polydispersity of the sub-units of hyaline cartilage proteoglycan constituting this fraction, while the higher values obtained for the intact proteoglycan are the result of the presence of hyaluronic acid in the sample. The molecular-weight range of the whole proteoglycan subunit preparation, assessed after carboxyl group modification, was 0.5–1.2 × 106. Apparently normal and abnormal cartilage was excised from single human osteoarthrosic femoral heads. Proteoglycans extracted by 4M guanidine hydrochloride were isolated after dissociative density gradient centrifugation and subjected to carboxyl group modification. Preparations from normal tissue exhibited molecular-weight averages ranging from 5 to 9 × 105. A molecular-weight reduction was observed with proteoglycans isolated from abnormal areas.  相似文献   

7.
SYNOPSIS. Crithidia fasciculata ribosomes were found to be 80S and to dissociate into 58 and 41S subunits; on 5 to 50% sucrose gradients, rRNA was separated into 25, 18, and 5S components. The molecular sizes of the heavier rRNA species, estimated by polyacrylamide gel electrophoresis were 1.24 and 0.84 M (×106 daltons). The 25S RNA has a tendency to interact with the 18S RNA to give a complex that is difficult to separate by sucrose gradient centrifugation. The 25S RNA is also unstable and dissociates into 0.73 and 0.57 M components. The 18S RNA has molecular size (0.84 M) higher than the 0.7 M reported for most eukaryotes, but similar to that of Euglena and Amoeba. Ribosomal RNA hybridized 0.29% of the nuclear DNA. Mitochondrial RNA, extracted by a rapid procedure was resolved into 16 and 5S components in sucrose gradients.  相似文献   

8.
Various structural and functional properties of ribulose 1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) isolated from the halophilic cyanobacterium (blue-green alga) Aphanothece halophytica were reexamined. The ready dissociation of this algal RuBisCO during sedimentation in a linear sucrose density gradient was observed. Low NaCl concentrations promote the dissociation of small subunit (B) from the original native enzyme molecule as evidenced by the sucrose density gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is thus possible that the intracellular osmoticum of A. halophytica might influence the structural integrity and activity of RuBisCO. The low residual carboxylase activity ascribed to the catalytic core, an oligomer form of the large subunit (A) apparently deficient in small subunit (B), was found to be markedly stimulated by a protein component which appears identical to subunit B. The purification and structural characterization of the catalytic core and subunit B were attempted by step-wise column chromatography on DEAE-cellulose, Utrogel AcA 34, Sephadex G-75, and hydroxylapatite, and at the final stage each component was purified to near homogeneity, although the catalytic core is still associated with a small quantity of subunit B. The addition of subunit B to the catalytic core does not alter the Km (HCO3?, RuBP) values, but Vmax values are markedly enhanced. Sucrose density gradient centrifugation gave a value of 16 S for the catalytic core. The molecular weights of the monomeric forms of the catalytic core (subunit A) and subunit B were 5.0 × 104 and 1.4 × 104, respectively.  相似文献   

9.
Our previously published method for isolation of neurons with extensive processes (Farooq et al., 1977) has been modified to permit the isolation of both astrocyte- and neuron-enriched fractions. Rat cerebral tissue is incubated with acetylated trypsin and disrupted. The cell suspension is separated first by differential centrifugation and then by gradient centrifugation on discontinuous Ficoll gradients. The method is reproducible and is applicable equally well to immature and adult animals. The yield of astrocytes of 57% particle purity, and higher weight purity, is 4–7 × 106 cells/brain, amounting to 1.5–2.0 mg of protein. The astrocytes appear to be a mixture of fibrous and protoplasmic types. The yield of neurons of 90% particle purity is 10–14 × 106 cells/brain, amounting to 2.4–3.0 mg of protein. A total yield of neurons of 28–37 × 106 cells/brain can be obtained at 70% purity. These preparations have been characterized by light microscopy and protein, RNA and DNA content.  相似文献   

10.
Embryos of the sea urchin, Hemicentrotus pulcherrimus, growing synchronously and entering the third “S” phase at 120 min after fertilization, were pulse-labeled with [3H]thymidine for various periods ranging from 15 sec to 20 min, and the size of nascent DNA was analyzed by centrifugation in an alkaline sucrose gradient. It was found that pulse-labeling for 15 sec gave rise to a sedimentation profile with a major radioactivity peak at the position corresponding to a molecular weight of 4 × 104 daltons. One-minute of labeling, however, gave a major radioactive band around the position corresponding to 1.4 × 106 daltons. Upon increasing the labeling time, the radioactivity peaks or bands shifted toward the increasing molecular weights. Finally, most of the radioactive DNA was found to sediment at the bottom when the embryos were exposed to [3H]thymidine for 15 min or longer. The time span of the S phase in the cleavage embryos was about 15 min. The results of pulse and chase experiments also supported the discontinuous mechanism of DNA replication in the cleavage embryos.  相似文献   

11.
A new plasmid designated pEA566 was isolated from Erwinia aroideae. The molecular weight of the plasmid, as determined by neutral and alkaline sucrose gradient centrifugation, electron microscopy, and agarose gel electrophoresis, was 6.6 × 106. The plasmid replicated under relaxed control, had three cleavage sites for KpnI restriction endonuclease, and no sites for EcoRI, BamHI, SalI, PstI, and HindIII.  相似文献   

12.
NADP-malic enzyme (EC 1.1.1.40), which is involved in the photosynthetic C4 pathway, was isolated from maize leaf and purified to apparent homogeneity as judged by polyacrylamide gel electrophoresis. At the final step, chromatography on Blue-Sepharose, the enzyme had been purified approximately 80-fold from the initial crude extract and its specific activity was 101 μmol malate decarboxylated/mg protein/min at pH 8.4. The enzyme protein had a sedimentation coefficient (s20,w) of 9.7 and molecular weight of 2.27 × 105 in sucrose density gradient centrifugation, and molecular weight of 2.26 × 105 calculated from sedimentation equilibrium analysis. The molecular weight of the monomeric form was determined to be 6.3 × 104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the pyruvate carboxylation reaction, HCO3? proved to be the active molecular species involved. With all other substrates at saturating concentration, the following kinetic constants were obtained: Km (malate), 0.4 mm; Km (NADP), 17.6 μm; Km (Mg2+), 0.11 mm. The maize leaf malic enzyme was absolutely specific for NADP. The Arrhenius plot obtained from enzyme activity measurements was linear in a temperature range of 13 to 48 °C, and the activation energy was calculated to be 9500 cal/mol.  相似文献   

13.
The approximate sizes of heterogeneous nuclear (HnRNA) and cytoplasmic RNA of sea urchin embryos were determined by DMSO density gradient centrifugation and acrylamide-formamide gel electrophoresis. The data suggest that the sizes of these molecules are smaller than those estimated under nondenaturing conditions. The size of most of the nuclear RNA ranges from 0.5 to 3 × 106 daltons, while that of the cytoplasmic RNA ranges from 0.1 to 2 × 106 daltons. Both nuclear and cytoplasmic RNA of sea urchin embryos may have a minor fraction (5–10%) of very large species with molecular weights up to 4 to 5 × 106 daltons.The idea that the size of HnRNA may be larger in organisms higher on the evolutionary scale is discussed.  相似文献   

14.
  • 1.1. The acid phosphatase (AcPase, EC 3.1.3.2) IV from rat testicular tissue was purified to apparent homogeneity.
  • 2.2. The enzyme displays a native molecular weight of 70 kDa determined on gel permeation chromatography on a Sephadex G-100 column and 68 kDa using linear 5–20% sucrose density gradient centrifugation. The subunit molecular weight on SDS-PAGE analysis is 67 kDa, suggesting that the enzyme is a monomeric protein.
  • 3.3. The enzyme does not bind to Concanavaline A-Sepharose 4B column, indicating that it is not a glycoprotein.
  • 4.4. The rat testis AcPase IV is a metal activated enzyme in which Mg2+ is the metal activating agent with a Ka, = 0.88 × 10−3 M. The Michaelis constant for p-nitrophenylphosphate, in the presence of saturating concentrations of Mg2+ ions, is 0.23 × 10−3 M.
  • 5.5. The enzyme preferentially hydrolizes p-nitrophenylphosphate, phenylphosphate and ATP.
  相似文献   

15.
Ribonucleic acids having template activities were obtained from particulate components prepared from the postribosomal supernatant of soybean seeds. These RNA were 9 S and 18 S in size, and these corresponded to the components (9 S, 18 S) of high molecular weight RNA (H–RNA) prepared from the supernatant of 100,000×g centrifugation. The sizes of the particulate components were 37 S and 59 S, respectively. Larger particles contained 18 S and 9S RNA, and smaller particles contained 9S RNA, but not 18 S RNA. Those particulate components differed in absorption pattern and in the behaviour on sucrose gradient centrifugation depending on the concentration of Mg27+ from the subunits of ribosomes.  相似文献   

16.
Homology of plasmids in strains of unicellular Cyanobacteria.   总被引:17,自引:0,他引:17  
Six strains of unicellular cyanobacteria were examined for the presence of plasmids. Analysis of lysates of these strains by CsCl-ethidium bromide density centrifugation yielded a major chromosomal DNA band and a minor band containing covalently closed circular plasmid DNA, as shown by electron microscopy and agarose gel electrophoresis. The sizes of the various plasmid species were determined; in each of the Synechococcus strains 6301, 6707, and 6908 two plasmid species were found with molecular weights of 5.3 × 106 and 32.7 × 106. Synechococcus strain 7425 had two plasmids of molecular weight 5.4 × 106 and 24 × 106. Synechococcus strain 6312 and Synechocystis strain 7005 each contained one plasmid species with molecular weight of 15.9 × 106 and 2.0 × 106, respectively. Restriction enzyme analysis revealed identical cleavage patterns for the plasmids of identical molecular weight.  相似文献   

17.
Abstract— Choline acetyltransferase (acetyl-CoA: choline O -acetyl transferase; EC 2.3.1.6; ChAc) purified from human brain (basal ganglia) and sciatic nerve were separated into apparent multiple enzyme forms by the method of isoelectric focusing (pH gradient 3-10) on acrylamide gel. A preparative separation of enzyme forms of human brain was accomplished by the column method, by using a sucrose gradient. When each separated form was re-electrofocused, only a portion of the ChAc activity was observed in its original pH region while more than one-half of the recovered activity for each fraction appeared at pH 7.8-8. Gel filtration and kinetic studies of separated forms indicated that the more acidic forms might be aggregates, while more basic forms might be configurational isomers. Human ChAc of sciatic nerve did not exhibit acidic forms on electrofocusing, but otherwise yielded an electrofocusing profile similar to that of human brain. ChAc of rabbit brain and sciatic nerve each exhibited only a single form at pH 7.1 ± 0.2. Although ChAc differs among species, the enzyme of brain and sciatic nerve of the same species cannot be clearly distinguished by electrofocusing.  相似文献   

18.
Summary A fast method for a single-step fractionation of a number of tRNA methyltransferases fromSalmonella typhimurium is described. The method basically consists of ion-exchange chromatography on a phosphocellulose column and permits the separation of the enzymes forming mt6A, m1G, m5U, m7G. The enzyme fractions appear sufficiently purified to allow the estimation of some molecular and kinetic properties. The apparent KM for adenosylmethionine range between 1.5 to 3.2×10−5 M, whereas KM for undermethylated tRNA range between 3.1×10−5 M to 3.1×10−4 M. Glycerol gradient determination indicates the following Mr for the native proteins: 25×103, 40×103, 50×103 and 65×103 for m7G-, mt6A-, m1G- and m5U-forming enzymes, respectively. A complete analysis of methylated nucleosides formedin vivo inS. typhimurium has been obtained: it also allowed us to infer the pattern of the various tRNA methyltransferases for this prokaryote. The tRNA methyltransferase forming mt6A has been isolated for the first time from any type of cell.  相似文献   

19.
Sucrose synthetase was purified about 130-fold from morning-glory (Pharbitis nil Choisy cv. Murasaki) callus cells, and the properties of sucrose synthesis and cleavage activities of the enzyme were compared. The enzyme preparation gave a single band by disc electrophoresis. The molecular mass of the enzyme was estimated to be 4.2 × 105 by gel filtration. The enzyme preparation gave two bands by SDS disc electrophoresis, suggesting the molecular mass of about 3.8 ×104 and 7.0 × 104. The pH optima of sucrose synthesis and cleavage activities of the enzyme were different from each other, giving pH 9.0 and pH 6.5 respectively. MgCl2, MnCl2 and CaCl2 activated the sucrose synthesis activity about two times the normal rate and conversely inhibited the sucrose cleavage activity. F-6-P was not replaced by fructose. UDP was the only valuable substrate as a nucleotide diphosphate. The enzyme showed the negative ecoperativity effect of UDPG suggesting to be an allosteric enzyme. The Km values of sucrose and fructose were calculated to be 167 mM and 5 mM, respectively. UDP suggested substrate inhibition. The apparent equilibrium constant varied between 1 to 3. Based on these results, the role of the enzyme in the sucrose metabolism of morning-glory callus cells will be discussed.  相似文献   

20.
Plasmid DNA of molecular weight 6.8 × 106 was isolated from Streptomyces kasugaensis MB273. The plasmid DNA showed a single CsCl-ethidium bromide density gradient centrifugation, in neutral sucrose gradient centrifugation, and in agarose gel electrophoresis. When this DNA was digested with BamHI or SalI endonucleases, an unexpected number of fragments were found on agarose gel electrophoresis. Molecular weight summation of fragments obtained from double restriction enzyme digestions suggested that the plasmid DNA was a mixture of two different plasmids. This was confirmed by constructing recombinant plasmids between S. kasugaensis plasmid DNA and pBR322, and then by isolating two plasmids after SalI endonuclease treatment followed by sucrose gradient centrifugation. One of the plasmids (pSK1) had a single recognition site for BamHI, EcoRI, and SalI, and three sites for BglII. The other plasmid (pSK2) had a single recognition site for EcoRI and BglII, two recognition sites for BamHI, and no cleavage site for SalI. The cleavage maps of these plasmids were constructed using several restriction endonucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号