首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Cytoplasmic male sterility (CMS), an economically important trait for hybrid seed production in many crops, is a maternally inherited trait in which a plant fails to produce functional anthers, pollen grains, or male gametes. It has long been reported that the restoration of CMS in chili pepper is controlled by a major nuclear gene termed restorer-of-fertility (Rf), along with several modifiers and some environmental factors. In this study, we identified the partial restoration (pr) locus related to the fertility restoration of CMS, demonstrated the inheritance of the trait, and developed a CAPS marker closely linked to the locus. The partially restored plant had normal anthers that produced a mix of normal and aborted pollen grains that stuck tightly to the anther wall, even after dehiscence. This trait was expressed only when the pepper plant had the sterile (S) cytoplasm and homozygous recessive pr alleles. A total of 768 AFLP primer combinations were screened, and bulked segregant analysis (BSA) was performed by preparing two pools of eight Pr/Pr (fully fertile) and eight pr/pr (partially fertile) plants, respectively, selected from the 87 individuals of the F2 segregating population. Of the eight Pr-linked AFLP markers that were identified, E-AGC/M-GCA122 and E-TCT/M-CCG116 were the closest to the locus, estimated at about 1.8 cM in genetic distance. E-AGC/M-GCA122 was converted into a CAPS marker, PR-CAPS, based on the sequences of the internal and flanking regions of the AFLP fragment. This PR-CAPS marker could be useful in selecting fully fertile lines (Pr/Pr) and eliminating partially fertile (pr/pr) and potential (Pr/pr) lines in segregant populations during the development of new inbred restorer lines.  相似文献   

2.
Kim DS  Kim DH  Yoo JH  Kim BD 《Molecules and cells》2006,21(1):135-140
Cytoplasmic male sterility (CMS) in plants, which is due to failure to produce functional pollen, is a maternally inherited trait. Specific nuclear genes that sup-press CMS, termed fertility restorer (Rf) genes, have been identified in several plants. In this study, Rf-linked molecular markers in pepper (Capsicum annuum L.) were detected by bulked segregant analysis of eight amplified fragment length polymorphisms (AFLPs). Only AFRF8 was successfully converted to a cleaved amplified polymorphic sequence (CAPS) marker. This was named AFRF8CAPS and genotype determination using it agreed with that obtained with the original AFRF8. A linkage map with a total size of 54.1 cM was constructed with AFRF8CAPS and the seven AFLP markers using the Kosambi function. The AFRF8CAPS marker was shown to be closest to Rf with a genetic distance of 1.8 cM. These markers will be useful for fast and reliable detection of restorer lines during F(1) hybrid seed production and breeding programs in pepper.  相似文献   

3.
Cytoplasmic male sterility (CMS), one of the most important traits in crop breeding, has been used for commercial seed production by F1 hybrid cultivars of pepper (Capsicum annuum L.). To develop reliable molecular markers for allelic selection of the Restorer-of-fertility (Rf) gene, which is known to be a major determinant of pollen fertility restoration in peppers, a sequence of approximately 10 kb flanking an RAPD fragment closely linked to the Rf locus was obtained by genome walking. A homology search revealed that this sequence contained an LTR retrotransposon and a non-LTR LINE-like retrotransposon. Sequencing of this Rf-linked region to search for polymorphisms between a dominant and recessive allele revealed 98% nucleotide sequence identity between them. A third polymorphic haplotype of the Rf-linked sequence, which has 94-96% nucleotide sequence identity with the two previously isolated haplotypes, was identified among a large number of breeding lines. Utilizing polymorphic sequences in the haplotypes, PCR markers were developed for selection of particular haplotypes and used to examine the distribution of the haplotypes in diverse breeding lines, cultivars, and C. annuum germplasms. Surprisingly, the third haplotype was the predominant type in C. annuum germplasms, while its frequency in F1 hybrid cultivars was relatively low. Meanwhile, analysis of breeding lines whose Rf allele genotypes and male-sterility phenotypes were already known revealed that the third haplotype was mainly present in exotic breeding lines that cause unstable male-sterility when combined with sterile cytoplasms.  相似文献   

4.
Cytoplasmic male sterility (CMS) is a maternally inherited trait in which plants do not produce viable pollen. Fertility in plants with CMS can be recovered by nuclear restorer genes. Most restorer genes cloned so far are members of the pentatricopeptide repeat (PPR) protein family. The objective of our study was to use the CMS-D8 and restoration (Rf2) system of cotton (Gossypium hirsutum L.) to develop more DNA markers for the Rf2 gene. In a backcross population with 112 plants, segregation of male fertility was 1 fertile : 1 sterile. Three new RAPD markers were identified for Rf2, one of which was converted to a CAPS marker. In addition, 2 AFLP markers and 1 SSR marker were identified to be linked to the fertility restorer gene (Rf2). PPR motif primers were designed based on the conserved PPR motifs and used in combination with AFLP primers to test the mapping population, and 1 PPR-AFLP marker was identified. A linkage map with 9 flanking markers including 1 from a previous study was constructed.  相似文献   

5.
用微卫星标记定位小麦T型CMS的恢复基因   总被引:18,自引:1,他引:17  
以T型细胞质雄性不育系 75 336 9A×恢复系 72 6 9 10的F2 群体作为育性调查和基因定位群体。通过育性分析 ,确定该恢复系含有 2个主效恢复基因 ;结合群分法 ,对恢复基因进行了SSR分子标记定位 ,在 2 30对微卫星引物中 ,微卫星标记Xgwm136和Xgwm5 5 0分别与 2个主效恢复基因连锁。这两个标记与Rf基因之间的遗传距离分别为 6 7cM和 5 1cM ,从而将该恢复基因定位在 1AS、1BS染色体上。  相似文献   

6.
Genetics of CMS fertility restoration was presented through the analysis of classic genetics and molecular markers. Based on F(2) segregation of the crosses between CMS and the restoring lines, the testcrosses and F(1) x F(1) populations, together with RAPD and SSR mapping, one dominant gene was identified to control the CMS fertility restoration in cotton. The strategy of genotype representation analysis (GRA) was put forward to screen the markers linked with the Rf(1) locus. Using 1,025 random decamer primers and 282 pairs of SSR primers, two RAPD and three SSR markers were identified to be closely linked to the Rf(1) gene. Among the five markers, three were co-dominantly inherited. Additionally, based on the analysis of monosomic and telesomic lines with one SSR maker, the Rf(1) locus could be located on the long arm of chromosome 4. The molecular markers available here are helpful in the development of the elite restoring lines in cotton by marker-assisted selection.  相似文献   

7.
Cytoplasmic male sterility (CMS) and its fertility restoration (Rf) genes are critical tools for hybrid seed production to utilize heterosis. In sunflower, CMS PET1 and the associated Rf gene Rf (1) is the only source extensively used in commercial hybrid production. The objective of this research was to develop new sources of CMS and fertility restorers to broaden the genetic diversity of hybrid seed production. We identified a new type of CMS, named as CMS GIG2, from an interspecific cross between Helianthus giganteus accession1934 and H. annuus cv. HA 89. Based on reactions to a set of standard Rf testers, CMS GIG2 is different from all previously reported CMS types, including the CMS GIG1 from another H. giganteus accession. We also identified an Rf gene for CMS GIG2 from wild species H. maximiliani accession 1631. The CMS GIG2 and its restoration gene were introduced into HA 89 background through recurrent backcross and single plant selection techniques. Genetic analysis revealed that the CMS GIG2-Rf system is controlled by a completely dominant gene, named as Rf (4), and the gene additive and dominance effects were estimated as 39.9 and 42.2%, respectively, in the HA 89 background. The gene Rf (4) was mapped onto linkage group 3 with simple sequence repeat (SSR) markers and RFLP-derived STS-marker, and is about 0.9 cM away from the SSR marker ORS1114 based on a segregation population of 933 individuals. The CMS GIG2-Rf (4) system tagged by molecular markers provides an alternative genetic source for hybrid breeding in the sunflower crop.  相似文献   

8.
Up to now a single cytoplasmic male sterility (CMS) source, PET1, is used worldwide for hybrid breeding in sunflower. Introgression of the restorer gene Rf1, responsible for fertility restoration, into new breeding material requires tightly linked markers to perform an efficient marker-assisted selection. A survey of 520 decamer primers by bulked segregant analyses identified five RAPD markers linked to the restorer gene Rf1. In a F(2) population of 183 individuals one of the RAPD markers, OPK13_454, mapped 0.8 cM from Rf1, followed by OPY10_740 with 2 cM. Bulked segregant analyses using 48 AFLP primer combinations identified 17 polymorphisms, which could be mapped in the same linkage group as Rf1. E33M61_136, and E41M48_113 were mapped 0.3 cM and 1.6 cM from the gene, respectively. Conversion of E41M48_113 into a sequence-specific marker resulted in a monomorphic pattern. However, two of the RAPD markers, OPK13_454 and OPY10_740, were successfully converted into SCAR markers, HRG01 and HRG02, which are now available for marker-assisted selection. To investigate the utility of these SCAR markers in other cross-combinations they were tested in a set of 20 lines. Comparison of the patterns of 11 restorer and nine maintainer lines of PET1 demonstrated that the markers OPK13_454/HRG01 and HRG02 were absent in all maintainer lines but present in all restorer lines, apart from the high oleic line RHA348 and the dwarf line Gio55. In addition, restorer lines developed from the interspecific hybrids Helianthus annuus x Helianthus mollis and H. annuus x Helianthus rigidus gave the same characteristic amplification products.  相似文献   

9.
Iso-cytoplasmic restorers possess the same male sterile cytoplasm as the cytoplasmic male sterile (CMS) lines, thereby minimizing the potential cyto-nuclear conflict in the hybrids. Restoration of fertility of the wild abortive CMS is governed by two major genes namely, Rf3 and Rf4. Therefore, assessing the allelic status of these restorer genes in the iso-cytoplasmic restorers using molecular markers will not only help in estimating the efficiency of these genes either alone or in combination, in fertility restoration in the hybrids in different environments, but will also be useful in determining the efficacy of these markers. In the present study, the efficiency of molecular markers in identifying genotypes carrying restorer allele of the gene(s) Rf3 and Rf4, restoring male fertility of WA cytoplasm in rice was assessed in a set of 100 iso-cytoplasmic rice restorers using gene linked as well as candidate gene based markers. In order to validate the efficacy of markers in identifying the restorers, a sub-set of selected 25 iso-cytoplasmic rice restorers were crossed with four different cytoplasmic male sterile lines namely, IR 79156A, IR 58025A, Pusa 6A and RTN 12A, and the pollen and spikelet fertility of the F1s were evaluated at three different locations. Marker analysis showed that Rf4 was the predominant fertility restorer gene in the iso-cytoplasmic restorers and Rf3 had a synergistic effect on fertility restoration. The efficiency of gene based markers, DRCG-RF4-14 and DRRM-RF3-10 for Rf4 (87%) and Rf3 (84%) genes was higher than respective gene-linked SSR markers RM6100 (80%) and RM3873 (82%). It is concluded that the gene based markers can be effectively used in identifying fertility restorer lines obviating the need for making crosses and evaluating the F1s. Though gene based markers are more efficient, there is a need to identify functional polymorphisms which can provide 100% efficiency. Three iso-cytoplasmic restorers namely, PRR 300, PRR 363 and PRR 396 possessing both Rf4 and Rf3 genes and good fertility restoration have been identified which could be used further in hybrid rice breeding.  相似文献   

10.
Molecular markers closely linked to the Restorer of fertility (Rf) locus in petunia were sought by conducting a bulk segregant analysis. The co-segregation of markers and Rf was tested on a large BC1 population produced from two different parental lines carrying Rf. The recombination frequency between OP704 and ECCA/MACT, the two most distal markers utilized in the fine-scale mapping. was significantly different in populations derived from parents that carry different nuclear backgrounds. The fine mapping identified an amplified fragment length polymorphism (AFLP) marker that co-segregates with Rf. A petunia BIBAC library (four genome equivalents), with an average insert size of 70 kb, was constructed and screened with the linked marker. A contiguous map was constructed from three different BIBAC clones that hybridized to the marker. As a result, we have identified a 37.5-kb BIBAC clone that co-segregates with Rf.  相似文献   

11.
A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥5 seeds/spike and 22 produced ≤4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ2 value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.  相似文献   

12.
The Rf3 gene restores the pollen fertility disturbed by S male sterile cytoplasm. In order to develop molecular markers tightly linked to Rf3, we used amplified fragment length polymorphism (AFLP) technique with near isogenic lines (NILs) and bulk segregant analysis (BSA). A BC1F1 population from a pair of NILs with different Rf3 locus was constructed and 528 primer combinations was screened. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. The closest marker E7P6 was 0.9 cM away from Rf3. Marker E3P1, 2.4 cM from Rf3, and E12M7, 1.8 cM from Rf3, were converted into a codominant CAPS and a dominant SCAR marker, and designated as CAPSE3P1 and SCARE12M7, respectively. These markers are useful for marker-assisted selection and map-based cloning of the Rf3 gene.  相似文献   

13.
Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear‐encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)‐type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD–CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS‐associated gene in LD–CMS rice, similar to its role in BT–CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT–CMS rice. We also show that RF2 promotes degradation of atp6–orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT–CMS rice. The amount of ORF79 protein in LD–CMS rice was one‐twentieth of the amount in BT–CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD–CMS and BT–CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD–CMS and BT–CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD–CMS and BT–CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79.  相似文献   

14.
In indica rice, the HongLian (HL)-type combination of cytoplasmic male sterility (CMS) and fertility restoration (Rf) is widely used for the production of commercial hybrid seeds in China, Laos, Vietnam and other Southeast Asian countries. Generally, any member of the gametophytic fertility restoration system, 50% of the pollen in hybrid F(1) plants displays recovered sterility. In this study, however, a HL-type hybrid variety named HongLian You6 had approximately 75% normal (viable) pollen rather than the expected 50%. To resolve this discrepancy, several fertility segregation populations, including F(2) and BC(1)F(1) derived from the HL-CMS line Yuetai A crossed with the restorer line 9311, were constructed and subjected to genetic analysis. A gametophytic restoration model was discovered to involve two non-allelic nuclear restorer genes, Rf5 and Rf6. The Rf5 had been previously identified using a positional clone strategy. The Rf6 gene represents a new restorer gene locus, which was mapped to the short arm of chromosome 8. The hybrid F(1) plants containing one restorer gene, either Rf5 or Rf6, displayed 50% normal pollen grains with I(2)-KI solution; however, those with both Rf5 and Rf6 displayed 75% normal pollens. We also established that the hybrid F(1) plants including both non-allelic restorer genes exhibited an increased stable seed setting when subjected to stress versus the F(1) plants with only one restorer gene. Finally, we discuss the breeding scheme for the plant gametophytic CMS/Rf system.  相似文献   

15.
The transition from vegetative to reproductive phase, flowering per se , floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se ), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.  相似文献   

16.
野败型水稻细胞质雄性不育恢复基因Rf-4的分子标记定位   总被引:23,自引:0,他引:23  
张群宇  刘耀光  张桂权  梅曼彤 《遗传学报》2002,29(11):1001-1004
为了用分子标记准确定位野败型水稻细胞质雄性不育恢复基因Rf-4,将日本水稻基因组项目(Rice Genome Program,RGP)构建的水稻遗传连锁图谱第10染色体分子遗传图上的分子标记R1877和G2155之间对应区域YAC物理图上的6个YAC克隆进行了亚克隆,获得119个片段,对这些探针进行多态性探查,获得了2个多态分子标记,用珍汕97A和恢复基因近等基因系的杂种F2分离群体中的117完全不育株进行连锁分析表明,从YAC4892获得的亚克隆Y3-8与Rf-4座位的连锁距离为0.9cM,从YAC4630获得的亚克隆Y1-10与Rf-4座位的连锁距离为3.2cM,根据以上结果把Rf-4座位定位于第10染色体的特定位置,为该基因的分子标记辅助选择和定位克隆打下了基础。  相似文献   

17.
Albinism in animals is generally a recessive trait, but in Japan a dominant oculocutaneous albino (OCA) mutant strain has been isolated in rainbow trout (Oncorhyncus mykiss). After confirming that this trait is not due to a tyrosinase gene mutation that causes OCA1 (tyrosinase-negative OCA), we combined the amplified fragment length polymorphism (AFLP) technique with bulked segregant analysis (BSA) to map the gene involved in dominant oculocutaneous albinism. Four AFLP markers tightly linked to the dominant albino locus were identified. One of these markers was codominant and we have it converted into a GGAGT-repeat microsatellite marker, OmyD-AlbnTUF. Using this pentanucleotide-repeat DNA marker, the dominant albino locus has been mapped on linkage group G of a reference linkage map of rainbow trout. The markers identified here will facilitate cloning of the dominant albino gene in rainbow trout and contribute to a better understanding of tyrosinase-negative OCA in animals.  相似文献   

18.
C Caranta  A Thabuis  A Palloix 《Génome》1999,42(6):1111-1116
The Pvr4 resistance gene in pepper confers a complete resistance to the three pathotypes of potato virus Y (PVY) and to pepper mottle virus (PepMoV). In order to use this gene in a marker-assisted selection (MAS) program and to permit the pyramiding of several potyvirus resistance genes in the same cultivar, tightly linked amplified fragment length polymorphism (AFLP) markers were obtained by the bulked segregant analysis method. Eight linked AFLP markers were mapped in an interval from 2.1 +/- 0.8 to 13.8 +/- 2.9 cM around this locus. The closest codominant AFLP marker was converted into a codominant CAPS (cleaved amplified polymorphic sequence) marker using data from the alignment of the two allele sequences. We have further characterized the relevance of the CAPS marker for MAS programs in different pepper breeding lines.  相似文献   

19.
Three Raphanus populations (BC1, F2 and R8) each segregating for the restoration of Ogura CMS were used tomap restorer loci. The three restorer loci, Rf1, Rf2 and Rf3, each exhibited dominant restoring alleles and wereeach mutually epistatic. Rf1 was mapped to the upper region of Rs1 using data from each population. Rf2 wasmapped to the middle of Rs2 using both the F2 and R8 populations. Rf3 was mapped to the upper region of Rs7using the R8 population. The marker analysis and linkage mapping of the BC1 and F2 populations were describedpreviously (Bett and Lydiate, 2003). Scoring at 114 marker loci in R8 population allowed a new map ofthe Raphanus genome to be integrated with the consensus map. The complex genetic control of the restoration ofOgura CMS in Raphanus is compared with the more simple genetic control of this trait previously described inB. napus. Markers linked to each of the three restorer loci will allow the routine generation and verification ofdefined restorer and maintainer lines for various combinations of defined restorer loci. Although the restorationof Ogura CMS in Raphanus probably involves additional loci, the identification of three loci and diagnosticmarkers for each provides a solid foundation for the development of a holistic model for the genetic control ofthis trait through mapping in additional populations.  相似文献   

20.
Cytoplasmic male sterility (CMS) in plants is known to be associated with novel open reading frames (ORFs) that result from recombination events in the mitochondrial genome. In this study Southern and Northern blot analyses using several mitochondrial DNA probes were conducted to detect the presence of differing band patterns between male fertile and CMS lines of chili pepper (Capsicum annuum L.). In the CMS pepper, a novel ORF, termed orf456, was found at the 3′-end of the coxII gene. Western blot analysis revealed the expression of an approximately 17-kDa product in the CMS line, and the intensity of expression of this protein was severely reduced in the restorer pepper line. To investigate the functional role of the ORF456 protein in plant mitochondria, we carried out two independent experiments to transform Arabidopsis with a mitochondrion-targeted orf456 gene construct by Agrobacterium-mediated transformation. About 45% of the T1 transgenic population showed the male-sterile phenotype and no seed set. Pollen grains from semi-sterile T1 plants were observed to have defects on the exine layer and vacuolated pollen phenotypes. It is concluded that this newly discovered orf456 may represent a strong candidate gene – from among the many CMS-associated mitochondrial genes – for determining the male-sterile phenotype of CMS in chili pepper. GenBank accession number DQ116040 (orf456 genomic sequence), DQ126683 (pepper coxII genomic sequence)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号