首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An X chromosome in Drosophila melanogaster is described which is mutationally unstable. Mutational events were identified through phenotypic changes associated with a tandem duplication of the X chromosome in which the white locus is present in duplicate. The left segment of the tandem duplication was marked with the mutant w sp, the right segment with mutant w 17G. Some of the phenotypic changes were identified as deletions involving the w 17G marked segment of the duplication. Other phenotypic changes involved the left segment in which phenotypically w sp mutated to w. Experimental evidence is presented which attributes these latter mutations to insertions of foreign DNA into the w locus equivalent to the insertion mutations of E. coli.  相似文献   

2.
Summary Seven independent transpositions of the w + gene have been recovered as derivatives of two separate direct tandem duplications of the white locus. The transpositions map to discrete sites on both major autosomes. Five transpositions were employed to study the role of w + gene dos-age on zeste (z) gene expression. Each transposition generates a unique zeste phenotype; one transposition is not predictive for another. A functional allele of zeste, z 77h, responds to w + gene dosage contrary to the z response.Supported by NIH grant GM22221  相似文献   

3.
A member of Ising's family of large transposing elements (TEs) has inserted into, or very near, the crinkled (ck, 2–50) locus. This TE (TE36) carries functional alleles of both the white and roughest loci, and causes a hypomorphic mutation of ck. The TE is visible in polytene chromosomes as a two-banded insertion between 35B9 and 35C1. These bands show homology to foldback (FB) elements by in situ hybridization. All spontaneous losses of TE36 remain mutant for ck and retain sequences homologous to FB at the site of TE's insertion. TE36 carries only one functional copy of w +, by the criterion that z w, TE36/ + flies are wild-type for eye color but z w; TE36/TE36 flies are zeste. This white+ gene is dosage compensated since w/Y; TE36/+ males have twice as much eye pigment as w/w; TE36/ + females. A form of the TE that has four polytene chromosome bands and expresses twice as much pigment as TE36 has been recovered. However, its white genes are not suppressed by zeste.  相似文献   

4.
A Rasmuson 《Mutation research》1985,148(1-2):65-70
An unstable white locus in Drosophila melanogaster originally described by Rasmuson and Green (1974) and further by Rasmuson et al. (1978, 1980) contains an IS element. This constellation interacts with the zeste mutation and forms a mutationally unstable system that is sensitive to a variety of mutagens. Mutational shifts between zeste and wild-type eye color as well as deletions and transpositions of the white locus are frequently occurring in the unstable X-chromosome in germ line and in somatic tissue. Germinal mutations from zeste to wild-type eye color are associated with an insertion of a piece of DNA, proximal to the wsp site, and the shifts from red to zeste are caused by an excision of the same piece (Rasmuson, in preparation). Mutations to pigmentless phenotype are interpreted as deletions of the white locus, while they always are irreversible and show non-complementation with wsp. The somatic system can be used as a screening test for potential mutagens, described by Rasmuson et al. (1984). This survey is an attempt to correlate the size of the mutated area of the eyes with the age of the larvae at mutagen treatment. X-Rays and MMS were used to give an indication of the mechanism of the instability, according to the different kinds of DNA damage induced. The results show that the mean size of red spots decreased with increasing age of larvae at treatment, while the mutation frequencies were increased because of the multiplication of the cells in the eye anlage susceptible to the mutagens. This is contradictory to the hypothesis maintained by Fahmy and Fahmy (1980) that the somatic shifts are not mutagenic but epigenetic events, due to altered regulation of the gene expression. Red spots induced with MMS are smaller in size than X-ray-induced red spots, indicating a delay in the establishment of mutations from chemically-induced lesions compared to irradiation damage. White spots on the other hand were equally large in size, irrespective of inducing agent and about twice the size of the chemically-induced red spots, implying a faster and more direct action for fixation of deletions than for the production of MMS induced shifts in eye color from zeste to red.  相似文献   

5.
Summary The genetics of a third case of high mutation frequency at the white locus in Drosophila melanogaster has been analyzed. The new mutable allele, w +u, mutates from a wild-type to a white-eyed phenotype in both males and females. The mutational event is 1) premeiotic, 2) not associated with crossingover, 3) sensitive to genetic modification, and 4) restricted to germinal tissue. The only mutants produced by w +u are deletions of the white locus. These deficiencies include subsites 4 and 5 of the white locus, but are cytologically unobservable. The mutable allele itself maps to subsite 4.The mutational properties of w +u are unlike those of the other highly mutable white alleles which have been interpreted in terms of phage-like controlling elements. Rather, the properties of w +u favor a model based on the premature termination of chromosome replication near the terminus of a replicon which leads to a chromosome deficient for the material between the point of premature termination and the end of the replicon.Supported by NIH predoctoral traineeship GM-150 and by NIH research grant GM-07428 to Dr. W. K. Baker.From a dissertation submitted to the Division of Biological Sciences of The University of Chicago in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

6.
7.
Summary The w m Co duplication of Drosophila hydei (Dp (1; Y) 16B2-17B1) contains 13–16 bands in salivary gland chromosomes. The duplication resides preferentially in the X heterochromatin or on the Y chromosome. In some stocks frequent (up to 4×10-3) exchanges of the duplication occur between different Y chromosomes (T(X; Y) and free Y) or between the X and the Y chromosome. About 60% of the T(X; Y)-Y exchanges induce mutations in the Y chromosomal male fertility genes of the recipient Y chromosome. From the mutational spectrum generated by the T(X; Y)-Y transpositions and from the variable efficiency as acceptor of different X-Y translocations it can be concluded that the exchanges show a remarkable site specificity: distal positions in the long arm of the Y chromosome are occupied preferentially. More proximal positions in the long arm of insertions into the short arm of the Y chromosome are found only with a lower frequency. No transpositions to the autosomes have been recovered. Duplications are lost with highly differing frequencies. The losses are not linked with insertions of the w m Co element into a new position and are more frequent than transpositions. Therefore, we regard the w m Co element as a giant transposon.  相似文献   

8.
Chromosomes and phenotypes of four different sex-linkedwhite-mottled mutants of the position-effect variogation type were studied. Three mutants (w m1,w m2,w m3) are X-chromosomal rearrangements which shift the w+ locus into a position close to heterochromatin, but which have different ouchromatic and heterochromatic breaks. The fourth, a spontaneous derivative ofw m1, is an insertional duplication of part of the X chromosome, including thew + andN +loci. The duplicated segment is inserted into the distal part of the long arm of the heterochromatic Y chromosome. It is designated,w m CoY, orXw m Co when transferred to the X chromosome.Three chromosomal types (w m1,w m CoY) and (Xw m Co) having the same cuchromatic break near thew + locus, cause large-spotted eyes whereas two others (w m2,w m3) produce a popper-and-salt type of mottling. From the position of the various eu- and heterochromatic breaks, it appears that the distance of thew + locus to the point of reunion with heterochromatin, rather than the amount or type of adjoining heterochromatin, dietates the phenotypic action of the displacedw + locus, in the sense of a spreading effect on two proposed functional subunits within thew + locus.The pigmentation background against which the mottling effect is produced, i.e., a givenw-allele with its characteristic colour, or other eye colour mutations, does not seem to affect the type of mottling. Drosopterins and ommochromes react in the same way to modifing factors like temperature and supernumerary Y chromosomes. Two mutants (w m2 andw m CoY) while reacting in the same manner to Y chromosomes showed an opposite temperature response.By exchange between the heterochromatin of the Y and X chromosome inw/w m CoY males thew m Co duplication was transferred between the sex chromosomes with a certain regularity. It is not yet known wether the exchanges are mitotic or meiotic in origin but their heterochromatic nature has been demonstrated cytologically.  相似文献   

9.
A G Gerats  H Huits  E Vrijlandt  C Maraa  E Souer    M Beld 《The Plant cell》1990,2(11):1121-1128
An insertion sequence of 283 base pairs has been isolated from the DFR-C gene (dihydroflavonol-4-reductase) of petunia. This insert was found only in a line unstable for the An1 locus (anthocyanin 1, located on chromosome VI) and not in fully pigmented progenitor and revertant lines or in stable white derivative lines. This implies that the An1 locus encodes the DFR-C gene. The unstable An1 system in the line W138 is known to be a two-element system, the autonomous element being located on chromosome I. In the presence of the autonomous element, W138 flowers exhibit a characteristic pattern of red revertant spots and sectors on a white background. In the absence of the autonomous element, the W138 allele gives rise to a stable recessive (white) phenotype. Sequence analysis of progenitor, unstable, and revertant alleles revealed dTph1 to contain perfect terminal inverted repeats of 12 base pairs. In DFR-C, it is flanked by an 8-base pair target site duplication. Sequences homologous to dTph1 are present in at least 50 copies in the line W138. Sequence analysis of An1 revertant alleles indicated that excision, including removal of the target site duplication, is required for reversion to the wild-type phenotype. Derivative stable recessive alleles showed excision of dTph1 and a rearrangement of the target site duplication. dTph1 is the smallest transposable element described to date that is still capable of transposition. The use of dTph1 in tagging experiments and subsequent gene isolation is discussed.  相似文献   

10.
11.
E W Vogel 《Mutation research》1989,211(1):153-170
This paper reports the results of a study on the genotoxic activities of 12 mutagens and clastogens of widely differing mode of action in somatic cells in vivo, i.e., in the eye primordia of Drosophila larvae. After emergence, adult flies were monitored for aberrantly colored sectors in the compound eyes of the following genotypes: UZ males and females (zeste) carrying a genetically unstable transposable element, SZ males and females (zeste) carrying a partial duplication of the w+ locus plus a transposon insert, white-coral/white (wco/w) females, w+/w females and w+ males. The UZ and SZ marker sets make it possible to monitor shifts from zeste to red (scored as mosaic red spots, RS) and for loss of the white locus (light spots, LS). wco/w+ females were scored for mosaic twin spots (TS) and LS, w+ genotypes for just LS. The genotoxins analyzed were methyl methanesulfonate (MMS), dimethyl sulfate (DMS) and ethylnitrosourea (ENU) (alkylating), adriamycin (AM) and daunomycin (DM) (intercalating), Trenimon, Thio-TEPA and cisplatin (DDP) (cross-linking), bleomycin (strand-breaking), 7,12-dimethylbenz[a]anthracene (DMBA) and 9,10-dimethylanthracene (DA) (bulky monoadducts) and cytosine arabinofuranoside (inhibition of DNA synthesis). The relative mutabilities with frequencies of mosaic light spots (LS) in w+/w female as the standard (relative mutability = 1) vs. genotypes UZ (RS in male) vs. SZ (RS in male) vs. w+ (LS in male) were 1:0.6:0.2:0.3 for MMS, 1:0.09:0.05:0.7 for DDP, and 1:1.6:0.2:1.0 for ENU, ENU showed exceptional behavior in that it was the only compound for which mutational response, measured by the induction of red spots, was highest with the UZ marker set. Occurrence of large light spots (LS) in male but not in female genotypes was negatively correlated with efficiency of agents for chromosomal damage, suggesting that in the hemizygous condition, as in males, selection of damaged cells and mitotic delay may have played a significant role. In general, the results indicate that there is no association between the ability of an agent to act as a clastogen and the recovery of aberrant (red spots) sectors in either the UZ or the SZ strain, and of single light spots (LS) in w+, UZ and SZ males. The possibility is considered that the process causing the genetic instability in the UZ strain is under genetic control, and that strong point mutagens such as ENU through efficient gene mutation induction can interfere with it.  相似文献   

12.
Males carrying, inserted on their Y chromosome, a small fragment of X including the w + (and N +) locus (white-mottled Confluens, w m Co), were crossed with the purpose of scoring exceptional progeny. Some of the male and female exceptions were progeny tested and further analysed. Among the various mechanisms which may lead to exceptional offspring, X-Y exchanges proved to occur with a not negligible frequency. The rate was 3%. Nondisjunction accounts for the bulk of the remaining exceptions and appears to be increased considerably in the presence of rearrangements on one or the other of the sex chromosomes.The w m Co fragment after having been switched from Y to X by some mechanism other than regular crossing over, may become retransferred to a normal Y chromosome, but at a rate below 3%.  相似文献   

13.
14.
TE146 is a transposing element (TE) consisting of six polytene chromosome bands that has inserted into the no-ocelli (noc 250) locus. This member of Ising's TE family carries two copies of the white and roughest loci. TE146 is lost from noc with a spontaneous frequency of approximately 1 in 22000 chromosomes. All spontaneous losses are accompanied by the reversion of the noc mutation associated with the TE. The TE is associated with fold-back (FB) sequences. The losses of TE146 retain fold-back homology at noc. Of 26 -ray-induced losses of TE146, 16 are gross deletions, removing loci neighboring noc and ten are not. The non-deleted -ray-induced losses are either noc and rst + or noc + and rst . The white+ genes of TE146 are dosage compensated since w/Y; TE146/+ and w/w; TE146/+ flies are sexually dimorphic for eye color. These w + genes are also suppressed by zeste since z w; TE146/+ flies have zeste-colored eyes.  相似文献   

15.
Alfalfa with unstable anthocyanin pigmentation has been independently discovered on six occasions since 1958. Genetic studies showed that each of the six unstable stocks was due to an allele mutable at the basic anthocyanin locus C2 in alfalfa. The alleles are designated c2-m1 through c2-m6. Variegated phenotypes of m1, m2, and m3 are similar and express reversion from the recessive to the dominant state. This reversion produces streaks and sectors of pigment in flower petals and seeds that are otherwise white. Reversion occurs at various times in development and may result in periclinal chimeras. The c2-m4 allele is unique in that it arose during tissue culture, whereas the other mutables were discovered in plant populations. Interestingly, m4 is very stable in planta and only rarely produces a sectored flower, but is very unstable in vitro as measured by about 23% revertant plants regenerated from tissue cultures. Most m4 reversion occurs relatively early in development and results in completely pigmented in vitro revertants, and in large sectors on in planta revertants. Alleles m5 and m6 are phenotypically and genetically similar. Their flowers are basic purple with white streaks thus representing mutation from dominant purple to recessive white. White progeny of m5 and m6 are very stable both in planta and in vitro; reversion of white to purple was never observed. Thus, the loss of function of the dominant allele results in a stable recessive or a deficiency. The absolute stability of m5 white derivatives favors the deficiency model, because transposable element mutations might show reversion. Finally, several mutations are described that reoccur in the mutable populations. It is speculated that they are recent mutations due to transposition of transposable elements.  相似文献   

16.
Summary Introduction of two doses of the X-chromosomalw mCo duplication next to a normal X-chromosome in males ofD. hydei leads to duplication of testis tissue and structures derived from the male genital disc. The effect of this partial hyperploidy of the X-chromosome seems restricted to the male. We tentatively conclude that this part of the X-chromosome contains some factor(s) which may specifically affect the reproductive system and analia of males.  相似文献   

17.
Gubb D  Roote J  McGill S  Shelton M  Ashburner M 《Genetics》1986,112(3):551-575
TE146, a large transposing element of Drosophila melanogaster, carries two copies of the white and roughest genes in tandem. In consequence, z1 w 11E4; TE146(Z)/+ flies have a zeste (lemon-yellow) eye color. However, one in 103 TE146 chromosomes mutates to a red-eyed form. The majority of these "spontaneous red" (SR) derivatives of TE146 have only one copy of the white gene and are, cytologically, two- to three-banded elements, rather than six-banded as their progenitor. The SR forms of TE146 are also unstable and give zeste-colored forms with a frequency of about one in 104. One such "spontaneous zeste" (SZ) derivative carries duplicated white genes as an inverted, rather than a tandem, repeat. The genetic instability of this inverted repeat form of TE146 is different from that of the original tandem repeat form. In particular, the inverted repeat form frequently produces derivatives with internal rearrangements of the TE and gives a much lower frequency of SR forms. In addition, two novel features of the interaction between w+ alleles in a zeste background have been found. First, copies of w + can become insensitive to suppression by zeste even when paired. Second, an inversion breakpoint may disrupt the pairing between two adjacent w+ alleles, necessary for their suppression by zeste, without physically separating them.  相似文献   

18.
Summary Unequal crossing over occurs in females heterozygousw a /w a4 such that a deficiency and duplication can be recovered regularly. A triplication was also found following crossing over in the homozygous duplication.Genetic analysis of the duplication showed that of the several knownw loci only thew e andsp-w loci are duplicated.By means of crossing overw e andsp-w were introduced separately into the left half of the duplication andw e into the right half. The phenotypic consequences of such substitutions are interpreted in terms of the loci which are included in specific functional units or genes. They suggest thatw e andsp-w are in distinctive functional units.The fact that these duplications and deficiencies are without obvious affect on salivary gland band morphology suggests that the gene loci constitute only a small portion of the band structure.  相似文献   

19.
The phenotypic effects of different doses of the dominant, sex-linked mutant Notch (N) and its wildtype allele (N +) were studied in Drosophila hydei, N being lethal in homozygous or hemizygous condition. Various dosage combinations were made by using N + N and N + N + attached-X chromosomes as well as X and Y N +-duplication chromosomes (w mCoY, XwmCo,and DpCo Nt). The N mutant used, N 68, is associated with a small inversion: In (I) N 68.The wing phenotype was found to depend solely on the number of functional (N +) alleles present, irrespective of the dose of N. Females with a single dose of N + are phenotypically Notch, females with three or four doses of N + show a Confluens wing phenotype. The latter occurs in varying degrees of expression which seem to be correlated with the relative amounts of sex-chromosomal heterochromatin present. In males the N + locus behaves as a dosage compensated locus either on the X or the Y chromosome.In the w mCo (w+N+) duplication, the w + locus shows variegation when placed over white, whereas N + placed over N 68 does not. The former being situated closer to the heterochromatin in this aberration, this is consistent with the idea of gene inhibition by heterochromatin but at the same time would imply a very limited spreading effect.  相似文献   

20.
Summary Gene duplications must play an important role in the evolutionary development of living organisms. Presented here is a general scheme that uses complementary alleles to isolate gene duplications in diploid organisms. The technique was used inDrosophila melanogaster to assess the rate of spontaneous gene duplication at two loci, maroon-like and rosy. The results indicate (1) that the rate of duplication of the maroon-like locus is on the order of 2.7×10–6; (2) that the rate of duplication of the rosy locus is approximately 1.7×10–4; and (3) that duplication occurs in males, suggesting that there may actually be two modes of gene duplication inDrosophila melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号