首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transcription factors induced by interferons alpha and gamma   总被引:12,自引:3,他引:9       下载免费PDF全文
  相似文献   

2.
A cloned human cutaneous lymphoma Hut102-B2 with helper T-cell phenotype (Leu1+, Leu2a?, Leu3a+) was found to produce substantial quantities of interferon (IFN) on induction with the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). Whereas only trace amounts of IFN were secreted by Hut102-B2 cells spontaneously, up to 8000 laboratory units/ ml of IFN were synthesized under the optimal conditions of TPA induction. Characterization studies including neutralization by specific antisera to IFNs and determination of the activities in human and bovine cells disclosed that the IFN produced by Hut102-B2 cells exposed to TPA was a mixture of immune IFN (IFN-γ) and leukocyte IFN (IFN-α) made in approximately equal amounts in terms of antiviral activity.  相似文献   

3.
O Kloke  D May  U Wandl  R Becher  B Opalka  U Beer  N Niederle 《Blut》1990,61(1):45-46
A 23-year-old male patient with Philadelphia chromosome (Ph) positive chronic myelogenous leukemia (CML) was treated with both IFN alpha and IFN gamma. Normalization of leukocyte counts was reached after 3 months of treatment. Southern blot analysis failed to detect the neoplastic cell clone after 19 months of therapy. Cytogenetically, complete suppression of Ph positive cells in the patient's bone marrow and blood was observed after 20 months and 25 months, respectively. This response was achieved with doses of IFN alpha and IFN gamma which were considerably lower than the dosage of IFN used in single agent therapy of CML.  相似文献   

4.
5.
6.
A direct comparison of the inhibitory effects of alpha, beta, and gamma interferons (IFNs) on replication of a hepatitis C virus subgenomic replicon in a hepatoma cell line revealed similarities in antiviral potency. However, alternate IFN-induced antiviral mechanisms were suggested following observations of striking differences between IFN-gamma and IFN-alpha/beta with respect to strength and durability of the antiviral response and the magnitude and pattern of IFN-mediated gene expression.  相似文献   

7.
8.
Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8(+) T cells. In this work we studied the down-regulation of the virus-specific CD8(+)-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-alpha/beta]), type II (IFN-gamma), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8(+)-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8(+) T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.  相似文献   

9.
During influenza virus infection innate and adaptive immune defenses are activated to eliminate the virus and thereby bring about recovery from illness. Both arms of the adaptive immune system, antibody neutralization of free virus and termination of intracellular virus replication by antiviral cytotoxic T cells (CTLs), play pivotal roles in virus elimination and protection from disease. Innate cytokine responses, such as alpha/beta interferon (IFN-alpha/beta) or IFN-gamma, can have roles in determining the rate of virus replication in the initial stages of infection and in shaping the initial inflammatory and downstream adaptive immune responses. The effect of these cytokines on the replication of pneumotropic influenza A virus in the respiratory tract and in the regulation of adaptive antiviral immunity was examined after intranasal infection of mice with null mutations in receptors for IFN-alpha/beta, IFN-gamma, and both IFNs. Virus titers in the lungs of mice unable to respond to IFNs were not significantly different from congenic controls for both primary and secondary infection. Likewise the mice were comparably susceptible to X31 (H3N2) influenza virus infection. No significant disruption to the development of normal antiviral CTL or antibody responses was observed. In contrast, mice bearing the disrupted IFN-alpha/beta receptor exhibited accelerated kinetics and significantly higher levels of neutralizing antibody activity during primary or secondary heterosubtypic influenza virus infection. Thus, these observations reveal no significant contribution for IFN-controlled pathways in shaping acute or memory T-cell responses to pneumotropic influenza virus infection but do indicate some role for IFN-alpha/beta in the regulation of antibody responses. Recognizing the pivotal role of CTLs and antibody in virus clearance, it is reasonable to assume a redundancy in IFN-mediated antiviral effects in pulmonary influenza. However, IFN-alpha/beta seems to be a valid factor in determining tissue tropism and replicative rates of highly virulent influenza virus strains as reported previously by others, and this aspect is discussed here.  相似文献   

10.
Lassa fever is a hemorrhagic fever caused by Lassa virus (LV), which primarily targets human dendritic cells (DC) and macrophages (MP). Massive numbers of viral particles are released with no effect on the viability, activation or maturation of these cells. LV does not inhibit the activation of cells induced by sCD40L or LPS. We report here the consequences of exogenous activation of LV-infected human DC and MP for viral replication. The activation of cells with lipopolysaccharide or exogenous poly(I-C) and the transfection of cells with poly(I-C) strongly inhibited LV replication, at least partly by inducing type I interferon (IFN) synthesis. In contrast, cell stimulation with sCD40L did not induce type I IFN responses or inhibit LV release. Recombinant type I IFNs strongly inhibited LV replication in both cell types, whereas IFNgamma and IFNlambda did not. The modest type I IFN production observed in LV-infected MP, but not in DC, was involved in controlling LV replication in MP. These results provide an explanation for the slower replication of LV in MP than in DC, and suggest that type I IFNs are crucial in the control of LV.  相似文献   

11.

Background

The host range of human immunodeficiency virus (HIV) is quite narrow. Therefore, analyzing HIV-1 pathogenesis in vivo has been limited owing to lack of appropriate animal model systems. To overcome this, chimeric simian and human immunodeficiency viruses (SHIVs) that encode HIV-1 Env and are infectious to macaques have been developed and used to investigate the pathogenicity of HIV-1 in vivo. So far, we have many SHIV strains that show different pathogenesis in macaque experiments. However, dynamic aspects of SHIV infection have not been well understood. To fully understand the dynamic properties of SHIVs, we focused on two representative strains—the highly pathogenic SHIV, SHIV-KS661, and the less pathogenic SHIV, SHIV-#64—and measured the time-course of experimental data in cell culture.

Methods

We infected HSC-F with SHIV-KS661 and -#64 and measured the concentration of Nef-negative (target) and Nef-positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for 9 days. The experiments were repeated at two different multiplicities of infection, and a previously developed mathematical model incorporating the infectious and non-infectious viruses was fitted to the full dataset of each strain simultaneously to characterize the infection dynamics of these two strains.

Results and conclusions

We quantified virological indices including virus burst sizes and basic reproduction number of both SHIV-KS661 and -#64. Comparing the burst size of total and infectious viruses (viral RNA copies and TCID50, respectively), we found that there was a statistically significant difference between the infectious virus burst size of SHIV-KS661 and -#64, while there was no significant difference between the total virus burst size. Furthermore, our analyses showed that the fraction of infectious virus among the produced SHIV-KS661 viruses, which is defined as the infectious viral load (TCID50/ml) divided by the total viral load (RNA copies/ml), is more than 10-fold higher than that of SHIV-#64 during overall infection (i.e., for 9 days). Taken together, we conclude that the highly pathogenic SHIV produces infectious virions more effectively than the less pathogenic SHIV in cell culture.
  相似文献   

12.
Interferons have recently been recognized as potent mediators in inflammatory processes, exerting profound effects on fibroblasts. The influence of interferons gamma and alpha on the chemotactic movement of fibroblasts toward various attractants was, therefore, investigated. Normal human adult and embryonal dermal fibroblasts, fibrosarcoma-derived fibroblasts and SV40-transformed fibroblasts were tested against conditioned medium from fibroblasts, the chemotactic peptide C-140 of fibronectin, platelet-derived growth factor, and leukotriene B4 as attractants in the presence or absence of the interferons. Interferons gamma and alpha inhibited chemotaxis in a dose-dependent manner and at concentrations at least as low as 10(-2) ng/ml. Inhibition was noticeable when the cells were exposed to interferon for as short a period as 60 minutes, and the effect was not readily reversible. Inhibition occurred when the cells came from sparse or dense cultures, but when platelet-derived growth factor was the attractant and the cells had been grown at low density there was no inhibition. It is concluded that this is a specific effect, not to be wholly explained by overall increase in membrane rigidity. Inhibition of fibroblast chemotaxis by interferons may be an important regulatory mechanism during wound healing or fibrosis and metastatic spread of tumor cells.  相似文献   

13.
Recently, tetherin has been identified as an effective cellular factor that prevents the release of human immunodeficiency virus type 1. Here, we show that the production of virus-like particles induced by viral matrix proteins of Lassa virus or Marburg virus was markedly inhibited by tetherin and that N-linked glycosylation of tetherin was dispensable for this antiviral activity. Our data also suggest that viral matrix proteins or one or more components that originate from host cells are targets of tetherin but that viral surface glycoproteins are not. These results suggest that tetherin inhibits the release of a wide variety of enveloped viruses from host cells by a common mechanism.There are a number of innate host defense systems against virus infection, including interferon (IFN) and toll-like receptor signaling pathways. Cellular factors that inhibit viral replication through interactions with viral components at various steps have also been identified.Recently, tetherin (also known as BST2, CD317, or HM1.24) was identified as a cellular factor that inhibits the release of human immunodeficiency virus type 1 (HIV-1) from infected cells (6). Tetherin is a membrane-associated protein with an N-terminal transmembrane domain, a central extracellular domain with two potential N-linked glycosylation sites, and a C-terminal glycosylphosphatidylinositol (GPI) anchor (Fig. (Fig.1A)1A) (3, 4), which appears to prevent HIV-1 release by retaining fully formed progeny virions on the surfaces of infected cells (6, 11). Tetherin is constitutively present on the surfaces of HeLa and CEM cells, while its cell surface expression is induced by alpha IFN (IFN-α) in HEK293, 293T, HOS, HT1080, and COS-7 cells. Tetherin expression has also been reported to be stimulated by IFN in various tissues, including those of the liver, lung, placenta, heart, pancreas, kidney, skeletal muscle, and brain (1, 3), suggesting that it may function as part of IFN-induced innate immunity against enveloped viruses in vivo.Open in a separate windowFIG. 1.Inhibitory effects of tetherin and its mutants against Lassa VLP release. (A) Tetherin (WT) contains an N-terminal intracellular domain (ID), a transmembrane domain (TM), a central extracellular domain (ED), and a C-terminal GPI anchor (GPI). Arrowheads indicate the predicted sites of cleavage prior to the addition of the GPI anchor. Tetherin possesses two potential N-linked glycosylation sites at positions 65 and 92 in the ED. N65A and N92A are mutants with the loss of a glycosylation site by an Asn-to-Ala substitution at positions 65 and 92, respectively. N65A/N92A is a nonglycosylated mutant with the loss of both glycosylation sites. (B and D) The Lassa virus Z and GP-C expression plasmids were cotransfected with the expression plasmid for WT or mutant tetherin or an empty vector (Control) into COS-7 cells (B) or 293T cells (D). Extracellular VLPs induced by Lassa virus Z/GP-C were pelleted from the culture fluids. Cell- or VLP-associated Z and GP-C (GP-2) were detected by Western blotting using rabbit anti-Z antiserum and mouse anti-GP-2 monoclonal antibody. WB using anti-FLAG antibody was also performed to examine the expression of WT and mutant tetherin in cells. WB for actin was done as the internal control. (C) The intensities of the bands for VLP-associated Z or GP-2 in panel B were quantified using a LAS3000 imaging system (Fujifilm). The level of Z or GP-2 in VLPs released from cells cotransfected with control vector was set to 100%. The data are shown as averages and standard deviations for three independent experiments. (E) COS-7 cells were cotransfected with the Lassa virus Z expression plasmid and the expression plasmid for tetherin (WT) or the empty vector (Control). VLPs induced by Z alone were examined by WB as described above. (F) 293T cells were cotransfected with pCLV-Z and the empty vector (left) or the expression plasmid for tetherin (right). At 48 h posttransfection, cells were observed by electron microscopy, which was performed as described previously (9). Mock, mock infected; Teth, tetherin. Bars, 500 nm.The antiviral activity of tetherin is antagonized by HIV-1 Vpu due to the downregulation of cell surface expression of tetherin by Vpu (6, 11). Previously, the IFN-α-induced cell surface retention of virus-like particles (VLPs) induced by Ebola virus matrix protein VP40 was shown to be overcome by Vpu expression (5). Thus, the release of enveloped viruses other than HIV-1 may also be inhibited by tetherin.Lassa and Marburg viruses are emerging viruses belonging to the families Arenaviridae and Filoviridae, respectively, that cause hemorrhagic fever with high mortality rates. No approved vaccines or antiviral drugs are available to prevent or treat these viral diseases. Similar to HIV-1, both are enveloped viruses that exit the host cells by membrane extrusion, known as budding, from the plasma membrane. Therefore, having an antiviral effect against Lassa and Marburg viruses would make tetherin a potent tool for novel antiviral strategies against a wide variety of enveloped viruses.We examined the antiviral activities of tetherin against Lassa and Marburg viruses and analyzed the characteristics required for its antiviral activity in order to gain insight into its antiviral mechanism of action.  相似文献   

14.
Administration of rHuIFN-alpha A/D and rMuIFN-gamma as single agents to tumor-bearing mice resulted in a dose-related antitumor effect in each of the six models studied. When the IFNs were given in combination, the effects varied between the tumor systems. No increase in efficacy was seen in mice bearing B16-F10 melanoma or M5076 reticulum cell sarcoma while additive antitumor activity was shown in the KA31 fibrosarcoma and P388 leukemia systems. Mice inoculated with L1210 lymphoma or colon 38 carcinoma, however, revealed enhanced efficacy which was greater than additive. The data also reveal that combination of IFNs alpha and gamma administered to normal and tumor-bearing mice resulted in toxicity which was not predicted by the appropriate doses of the single agents. These studies suggest that combination of IFNs alpha and gamma may provide greater therapeutic utility than the single agents and underscore the need for additional, carefully designed preclinical and clinical efforts.  相似文献   

15.
16.
Interferon (IFN)-alpha/beta was induced in the circulation of mice infected intravenously with Listeria monocytogenes 24 to 72 hr after infection, but was not induced by the administration of heat-killed Listeria, listerial cell wall fraction (LCWF), or listerial soluble fraction. Appearance of IFN-alpha/beta showed a pattern similar to that of the growth of bacteria in the spleen and the liver of mice. IFN-alpha/beta production was abrogated by pretreatment of mice with anti-asialo GM1 antibody, antithymocyte serum, or hydrocortisone, but not with cyclophosphamide or carrageenan. Such treatments which suppressed IFN-alpha/beta production did not influence bacterial growth in the organs of mice in the early stage of Listeria infection. Administration of IFN-alpha/beta exogenously also did not. After 5 days of infection when the specific resistance against reinfection with Listeria was established, IFN-gamma but not IFN-alpha/beta was induced in the circulation 3 to 6 hr after stimulation with LCWF or reinfection with Listeria. IFN-gamma production was abrogated completely by cyclophosphamide and antithymocyte serum, and partially by hydrocortisone and carrageenan, but not by anti-asialo GM1 antibody in Listeria-infected mice treated with these agents before induction of IFN-gamma by LCWF. Presumably, IFN-alpha/beta might be produced by asialo GM1-bearing cells but IFN-gamma might not. However, IFN-gamma production was suppressed in Listeria-infected mice, when IFN-alpha/beta production had been inhibited by treatment with anti-asialo GM1 antibody or when the IFN produced had been neutralized with anti-mouse IFN-alpha/beta antibody. Therefore, it is conceivable that IFN-alpha/beta might be essential for the generation or the expression of antigen-specific T cells involving IFN-gamma production and acquired resistance during Listeria infection. In fact, the bacterial growth in the organs of mice in the early stage of infection was normal in IFN-alpha/beta-depleted mice but it resulted in the delay of T-cell-dependent elimination of bacteria from the organs of mice in the late stage.  相似文献   

17.
18.
Inhibition of alpha interferon signaling by hepatitis B virus   总被引:4,自引:0,他引:4       下载免费PDF全文
Alpha interferon (IFN-alpha) and pegylated IFN-alpha (pegIFN-alpha) are used for the treatment of chronic hepatitis B (CHB). Unfortunately, only a minority of patients can be cured. The mechanisms responsible for hepatitis B virus (HBV) resistance to pegIFN-alpha treatment are not known. pegIFN-alpha is also used to treat patients with chronic hepatitis C (CHC). As with chronic hepatitis B, many patients with chronic hepatitis C cannot be cured. In CHC, IFN-alpha signaling has been found to be inhibited by an upregulation of protein phosphatase 2A (PP2A). PP2A inhibits protein arginine methyltransferase 1 (PRMT1), the enzyme that catalyzes the methylation of the important IFN-alpha signal transducer STAT1. Hypomethylated STAT1 is less active because it is bound by its inhibitor, PIAS1. In the present work, we investigated whether similar molecular mechanisms are also responsible for the IFN-alpha resistance found in many patients with chronic hepatitis B. We analyzed the expression of PP2A, the enzymatic activity of PRMT1 (methylation assays), the phosphorylation and methylation of STAT1, the association of STAT1 with PIAS1 (via coimmunoprecipitation assays), the binding of activated STAT1 to interferon-stimulated response elements (via electrophoretic mobility shift assays), and the induction of interferon target genes (via real-time RT-PCR) in human hepatoma cells expressing HBV proteins as well as in liver biopsies from patients with chronic hepatitis B and from controls. We found an increased expression of PP2A and an inhibition of IFN-alpha signaling in cells expressing HBV proteins and in liver biopsies of patients with CHB. The molecular mechanisms involved are similar to those found in chronic hepatitis C.  相似文献   

19.
Production of interferon (IFN) by Listeria monocytogenes (LM) in nonimmunized mouse spleen cell cultures was studied. IFN-gamma defined by virtue of its acid stability and antigenicity was produced in spleen cell cultures obtained from ddY mice, C57BL/6 mice, and BALB/c mice in response to heat-killed (HK) LM within 24 hr. On the other hand, production of IFN-alpha/beta was demonstrated in spleen cell cultures obtained from one of four nude mice (BALB/c, nu/nu). Therefore, it is important to know the reason why the spleen cells of mice other than nude mice did produce only IFN-gamma, but did not produce IFN-alpha/beta in response to HK-LM. Spleen cells obtained from ddY mice were fractionated, and the cellular source for IFN production of either IFN-alpha/beta or IFN-gamma induced by HK-LM was investigated. IFN-gamma was produced only by a mixture of T lymphocytes (nylon wool-nonadherent, Thy-1-positive cells) and macrophages by HK-LM. Neither T lymphocytes nor macrophages alone produced IFN by HK-LM. Macrophage-depleted spleen cells produced neither IFN-gamma nor IFN-alpha/beta, but these cells acquired the ability to produce IFN-alpha/beta, not IFN-gamma, only when they had been treated with IFN-alpha/beta. A possible mechanism of both IFN-gamma and IFN-alpha/beta induction by Listeria in mouse spleen cell cultures is discussed.  相似文献   

20.
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a formidable battle horse for the study of viral immunology, as well as viral persistence and associated diseases. Investigations with LCMV have uncovered basic mechanisms by which viruses avoid elimination by the host adaptive immune response. In this study we show that LCMV also disables the host innate defense by interfering with beta interferon (IFN-beta) production in response to different stimuli, including infection with Sendai virus and liposome-mediated DNA transfection. Inhibition of IFN production in LCMV-infected cells was caused by an early block in the IFN regulatory factor 3 (IRF-3) activation pathway. This defect was restored in cells cured of LCMV, indicating that one or more LCMV products are responsible for the inhibition of IRF-3 activation. Using expression plasmids encoding individual LCMV proteins, we found that expression of the LCMV nucleoprotein (NP) was sufficient to inhibit both IFN production and nuclear translocation of IRF-3. To our knowledge, this is the first evidence of an IFN-counteracting viral protein in the Arenaviridae family. Inhibition of IFN production by the arenavirus NP is likely to be a determinant of virulence in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号