首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate smooth muscle cells predominantly express alpha1-adrenoceptors (alpha1-AR). alpha1-AR antagonists induce prostate smooth muscle relaxation and therefore they are useful therapeutic compounds for the treatment of benign prostatic hyperplasia symptoms. However, the Ca(2+) entry pathways associated with the activation of alpha1-AR in the prostate have yet to be elucidated. In many cell types, mammalian homologues of transient receptor potential (TRP) genes, first identified in Drosophila, encode TRPC (canonical TRP) proteins. They function as receptor-operated channels (ROCs) which are involved in various physiological processes such as contraction, proliferation, apoptosis, and differentiation. To date, the expression and function of TRPC channels have not been studied in prostate smooth muscle. In fura-2 loaded PS1 (a prostate smooth muscle cell line) which express endogenous alpha1A-ARs, alpha-agonists epinephrine (EPI), and phenylephrine (PHE) induced Ca(2+) influx which depended on the extracellular Ca(2+) and PLC activation but was independent of PKC activation. Thus, we have tested two membrane-permeable analogues of diacylglycerol (DAG), oleoyl-acyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG). They initiated Ca(2+) influx whose properties were similar to those induced by the alpha-agonists. Sensitivity to 2-aminoethyl diphenylborate (2-APB), SKF-96365 and flufenamate implies that Ca(2+)-permeable channels mediated both alpha-agonist- and OAG-evoked Ca(2+) influx. Following the sarcoplasmic reticulum (SR) Ca(2+) store depletion by thapsigargin (Tg), a SERCA inhibitor, OAG and PHE were both still able to activate Ca(2+) influx. However, OAG failed to enhance Ca(2+) influx when added in the presence of an alpha-agonist. RT-PCR and Western blotting performed on PS1 cells revealed the presence of mRNAs and the corresponding TRPC3 and TRPC6 proteins. Experiments using an antisense strategy showed that both alpha-agonist- and OAG-induced Ca(2+) influx required TRPC3 and TRPC6, whereas the Tg-activated ("capacitative") Ca(2+) entry involved only TRPC3 encoded protein. It may be thus concluded that PS1 cells express TRPC3 and TRPC6 proteins which function as receptor- and store-operated Ca(2+) entry pathways.  相似文献   

2.
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.  相似文献   

3.
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) results from Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through Ca(2+)-permeable ion channels and is crucial for initiating intestinal epithelial restitution to reseal superficial wounds after mucosal injury. Capacitative Ca(2+) entry (CCE) induced by Ca(2+) store depletion represents a major Ca(2+) influx mechanism, but the exact molecular components constituting this process remain elusive. This study determined whether canonical transient receptor potential (TRPC)1 served as a candidate protein for Ca(2+)-permeable channels mediating CCE in intestinal epithelial cells and played an important role in early epithelial restitution. Normal intestinal epithelial cells (the IEC-6 cell line) expressed TRPC1 and TPRC5 and displayed typical records of whole cell store-operated Ca(2+) currents and CCE generated by Ca(2+) influx after depletion of intracellular stores. Induced TRPC1 expression by stable transfection with the TRPC1 gene increased CCE and enhanced cell migration during restitution. Differentiated IEC-Cdx2L1 cells induced by forced expression of the Cdx2 gene highly expressed endogenous TRPC1 and TRPC5 and exhibited increased CCE and cell migration. Inhibition of TRPC1 expression by small interfering RNA specially targeting TRPC1 not only reduced CCE but also inhibited cell migration after wounding. These findings strongly suggest that TRPC1 functions as store-operated Ca(2+) channels and plays a critical role in intestinal epithelial restitution by regulating CCE and intracellular [Ca(2+)](cyt).  相似文献   

4.
In most non-excitable cells, calcium (Ca(2+)) release from the inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx through the plasma membrane Ca(2+) channels whose molecular composition is poorly understood. Several members of mammalian TRP-related protein family have been implicated to both receptor- and store-operated Ca(2+) influx. Here we investigated the role of the native transient receptor potential 3 (TRPC3) homologue in mediating the store- and receptor-operated calcium entry in A431 cells. We show that suppression of TRPC3 protein levels by small interfering RNA (siRNA) leads to a significant reduction in store-operated calcium influx without affecting the receptor-operated calcium influx. With single-channel analysis, we further demonstrate that reduction of TRPC3 levels results in suppression of specific subtype of store-operated calcium channels and activation of store-independent channels. Our data suggest that TRPC3 is required for the formation of functional store-operated channels in A431 cells.  相似文献   

5.
6.
The protective epithelial barrier in our skin undergoes constant regulation, whereby the balance between differentiation and proliferation of keratinocytes plays a major role. Impaired keratinocyte differentiation and proliferation are key elements in the pathophysiology of several important dermatological diseases, including atopic dermatitis and psoriasis. Ca(2+) influx plays an essential role in this process presumably mediated by different transient receptor potential (TRP) channels. However, investigating their individual role was hampered by the lack of specific stimulators or inhibitors. Because we have recently identified hyperforin as a specific TRPC6 activator, we investigated the contribution of TRPC6 to keratinocyte differentiation and proliferation. Like the endogenous differentiation stimulus high extracellular Ca(2+) concentration ([Ca(2+)](o)), hyperforin triggers differentiation in HaCaT cells and in primary cultures of human keratinocytes by inducing Ca(2+) influx via TRPC6 channels and additional inhibition of proliferation. Knocking down TRPC6 channels prevents the induction of Ca(2+)- and hyperforin-induced differentiation. Importantly, TRPC6 activation is sufficient to induce keratinocyte differentiation similar to the physiological stimulus [Ca(2+)](o). Therefore, TRPC6 activation by hyperforin may represent a new innovative therapeutic strategy in skin disorders characterized by altered keratinocyte differentiation.  相似文献   

7.
In addition to their well-defined roles in replenishing depleted endoplasmic reticulum (ER) Ca(2+) reserves, molecular components of the store-operated Ca(2+) entry pathway regulate breast cancer metastasis. A process implicated in cancer metastasis that describes the conversion to a more invasive phenotype is epithelial-mesenchymal transition (EMT). In this study we show that EGF-induced EMT in MDA-MB-468 breast cancer cells is associated with a reduction in agonist-stimulated and store-operated Ca(2+) influx, and that MDA-MB-468 cells prior to EMT induction have a high level of non-stimulated Ca(2+) influx. The potential roles for specific Ca(2+) channels in these pathways were assessed by siRNA-mediated silencing of ORAI1 and transient receptor potential canonical type 1 (TRPC1) channels in MDA-MB-468 breast cancer cells. Non-stimulated, agonist-stimulated and store-operated Ca(2+) influx were significantly inhibited with ORAI1 silencing. TRPC1 knockdown attenuated non-stimulated Ca(2+) influx in a manner dependent on Ca(2+) influx via ORAI1. TRPC1 silencing was also associated with reduced ERK1/2 phosphorylation and changes in the rate of Ca(2+) release from the ER associated with the inhibition of the sarco/endoplasmic reticulum Ca(2+)-ATPase (time to peak [Ca(2+)](CYT) = 188.7 ± 34.6 s (TRPC1 siRNA) versus 124.0 ± 9.5 s (non-targeting siRNA); P<0.05). These studies indicate that EMT in MDA-MB-468 breast cancer cells is associated with a pronounced remodeling of Ca(2+) influx, which may be due to altered ORAI1 and/or TRPC1 channel function. Our findings also suggest that TRPC1 channels in MDA-MB-468 cells contribute to ORAI1-mediated Ca(2+) influx in non-stimulated cells.  相似文献   

8.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

9.
10.
Shin Y  Daly JW  Choi OH 《Cell calcium》2000,27(5):269-280
Sphingosine induces a biphasic increase in cytosolic-free Ca(2+)([Ca(2+)](i)) with an initial peak followed by a sustained increase in HL-60 cells differentiated into neutrophil-like cells. The initial peak is not affected by the presence of ethylene glycol bis (beta-aminoethyl ether) N, N, N', N-tetraacetic acid (EGTA) in the buffer and appears to be dependent on conversion of sphingosine to sphingosine -1-phosphate (S1P) by sphingosine kinase, since it is blocked by the presence of N, N-dimethylsphingosine (DMS), which, like sphingosine, causes a sustained increase itself. The sustained increase that is elicited by sphingosine or DMS is abolished by the presence of EGTA in the buffer. The sustained sphingosine-induced Ca(2+)influx does not appear due to Ca(2+)influx through store-operated Ca(2+)(SOC) channels, since the influx is not inhibited by SKF 96365, nor is it augmented by loperamide. In addition, sphingosine and DMS attenuate the Ca(2+)influx through SOC channels that occurs after depletion of intracellular stores by ATP or thapsigargin. Both the initial peak and the sustained increase in [Ca(2+)](i)elicited by sphingosine can be blocked by phorbol 12-myristate 13-acetate (PMA)-elicited activation of protein kinase C. Thus, in HL-60 cells sphingosine causes a mobilization of Ca(2+)from intracellular Ca(2+)stores, which requires conversion to S1P, while both sphingosine and DMS elicit a Ca(2+)influx through an undefined Ca(2+)channel and cause a blockade of SOC channels.  相似文献   

11.
Reversal of the plasma membrane Na(+)/Ca(2+) exchanger (NCX) has been shown to mediate Ca(2+) influx in response to activation of G-protein linked receptors. Functional coupling of reverse-mode NCX with canonical transient receptor potential channels (TRPC), specifically TRPC6, has recently been demonstrated by our laboratory to mediate Ca(2+) influx in rat aortic smooth muscle cells (RASMCs) following ATP stimulation. In this communication, we provide further detail of this functional coupling by indirectly measuring NCX reversal. We found that NCX reversal, induced by the removal of extracellular Na(+), was increased following stimulation with ATP and the diacylglycerol analog 1-Oleoyl-2-acetyl-sn-glycerol. This increased NCX reversal was attenuated by SKF-96365, an inhibitor of non-selective cation channels, and by activation of protein kinase C with phorbol ester 12-tetradecanoylphorbol-13 acetate. These data are consistent with the known properties of TRPC6 and further support that functional coupling of TRPC6 and NCX occurs via a receptor-operated, rather than store-operated, cascade in RASMCs.  相似文献   

12.
Aires V  Hichami A  Boulay G  Khan NA 《Biochimie》2007,89(8):926-937
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.  相似文献   

13.
Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries involves Ca(2+) entry through both L-type and 2-APB-sensitive receptor-operated channels, as well as Ca(2+) sensitization mechanisms mediated by PKC, TK, and RhoK. A capacitative Ca(2+) entry coupled to noncontractile functions of the smooth muscle cell is also demonstrated.  相似文献   

14.
Ca(2+)-permeable cation channels consisting of canonical transient receptor potential 1 (TRPC1) proteins mediate Ca(2+) influx pathways in vascular smooth muscle cells (VSMCs), which regulate physiological and pathological functions. We investigated properties conferred by TRPC1 proteins to native single TRPC channels in acutely isolated mesenteric artery VSMCs from wild-type (WT) and TRPC1-deficient (TRPC1(-/-)) mice using patch-clamp techniques. In WT VSMCs, the intracellular Ca(2+) store-depleting agents cyclopiazonic acid (CPA) and 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) both evoked channel currents, which had unitary conductances of ~2 pS. In TRPC1(-/-) VSMCs, CPA-induced channel currents had 3 subconductance states of 14, 32, and 53 pS. Passive depletion of intracellular Ca(2+) stores activated whole-cell cation currents in WT but not TRPC1(-/-) VSMCs. Differential blocking actions of anti-TRPC antibodies and coimmunoprecipitation studies revealed that CPA induced heteromeric TRPC1/C5 channels in WT VSMCs and TRPC5 channels in TRPC1(-/-) VSMCs. CPA-evoked TRPC1/C5 channel activity was prevented by the protein kinase C (PKC) inhibitor chelerythrine. In addition, the PKC activator phorbol 12,13-dibutyrate (PDBu), a PKC catalytic subunit, and phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) activated TRPC1/C5 channel activity, which was prevented by chelerythrine. In contrast, CPA-evoked TRPC5 channel activity was potentiated by chelerythrine, and inhibited by PDBu, PIP(2), and PIP(3). TRPC5 channels in TRPC1(-/-) VSMCs were activated by increasing intracellular Ca(2+) concentrations ([Ca(2+)](i)), whereas increasing [Ca(2+)](i) had no effect in WT VSMCs. We conclude that agents that deplete intracellular Ca(2+) stores activate native heteromeric TRPC1/C5 channels in VSMCs, and that TRPC1 subunits are important in determining unitary conductance and conferring channel activation by PKC, PIP(2), and PIP(3).  相似文献   

15.
In this paper we report that stimulation of mAChRs in PC12D cells activates Ca2+ channels that are regulated independently of intracellular Ca2+ stores. In nominally Ca2+-free medium, exposure of PC12D cells to carbachol stimulates a robust influx of Ba2+, a Ca2+ substitute. This influx is blocked by atropine, but not by inhibitors of the nicotinic acetylcholine receptor or L-, N-, or T-type voltage-regulated Ca2+ channels. By contrast, depletion of intracellular Ca2+ stores with thapsigargin only weakly stimulates Ba2+ influx. Unlike store-operated Ca2+ channels (SOCCs), which close only after intracellular Ca2+ stores refill, channels mediating carbachol-stimulated Ba2+ influx rapidly close following the inactivation of mAChRs with atropine. Ba2+ influx is inhibited by extracellular Ca2+, by the Ca2+ channel blocker SKF-96365, and by activation of protein kinase C (PKC). Exogenous expression of antisense RNA encoding the rat canonical-transient receptor potential Ca2+ channel subtype 6 (TRPC6) or the N-terminal domain of TRPC6 blocks carbachol-stimulated Ba2+ influx in PC12D cells. Expression of TRPC6 antisense RNA or the TRPC6 N-terminal domain also blocks Ba2+ influx stimulated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a diacylglycerol analog previously shown to activate exogenously expressed TRPC6 channels. These data show that mAChRs in PC12D cells activate endogenous Ca2+ channels that are regulated independently of Ca2+ stores and require the expression of TRPC6.  相似文献   

16.
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.  相似文献   

17.
Ca(2+) signaling regulates many important physiological events within a diverse set of living organisms. In particular, sustained Ca(2+) signals play an important role in controlling cell proliferation, cell differentiation and the activation of immune cells. Two key elements for the generation of sustained Ca(2+) signals are store-operated and receptor-operated Ca(2+) channels that are activated downstream of phospholipase C (PLC) stimulation, in response to G-protein-coupled receptor or growth factor receptor stimulation. One goal of this review is to help clarify the role of canonical transient receptor potential (TRPC) proteins in the formation of native store-operated and native receptor-operated channels. Toward that end, data from studies of endogenous TRPC proteins will be reviewed in detail to highlight the strong case for the involvement of certain TRPC proteins in the formation of one subtype of store-operated channel, which exhibits a low Ca(2+)-selectivity, in contrast to the high Ca(2+)-selectivity exhibited by the CRAC subtype of store-operated channel. A second goal of this review is to highlight the growing body of evidence indicating that native store-operated and native receptor-operated channels are formed by the heteromultimerization of TRPC subunits. Furthermore, evidence will be provided to argue that some TRPC proteins are able to form multiple channel types.  相似文献   

18.
Tseng PH  Lin HP  Hu H  Wang C  Zhu MX  Chen CS 《Biochemistry》2004,43(37):11701-11708
We previously reported that phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), a lipid product of phosphoinositide 3-kinase (PI3K), induced Ca(2+) influx via a noncapacitative pathway in platelets, Jurkat T cells, and RBL-2H3 mast cells. The identity of this Ca(2+) influx system, however, remains unclear. Here, we investigate a potential link between PIP(3)-sensitive Ca(2+) entry and the canonical transient receptor potential (TRPC) channels by developing stable human embryonic kidney (HEK) 293 cell lines expressing TRPC1, TRPC3, TRPC5, and TRPC6. Two lines of evidence support TRPC6 as a putative target by which PIP(3) induces Ca(2+) influx. First, Fura-2 fluorometric Ca(2+) analysis shows the ability of PIP(3) to selectively stimulate [Ca(2+)](i) increase in TRPC6-expressing cells. Second, pull-down analysis indicates specific interactions between biotin-PIP(3) and TRPC6 protein. Our data indicate that PIP(3) activates store-independent Ca(2+) entry in TRPC6 cells via a nonselective cation channel. Although the activating effect of PIP(3) on TRPC6 is reminiscent to that of 1-oleoyl-2-acetyl-sn-glycerol, this activation is not attributable to the diacylglycerol substructure of PIP(3) since other phosphoinositides failed to trigger Ca(2+) responses. The PIP(3)-activated Ca(2+) entry is inhibited by known TRPC6 inhibitors such as Gd(3+) and SKF96365 and is independent of IP(3) production. Furthermore, we demonstrated that TRPC6 overexpression or antisense downregulation significantly alters the amplitude of PIP(3)- and anti-CD3-activated Ca(2+) responses in Jurkat T cells. Consequently, the link between TRPC6 and PIP(3)-mediated Ca(2+) entry provides a framework to account for an intimate relationship between PI3K and PLCgamma in initiating Ca(2+) response to agonist stimulation in T lymphocytes.  相似文献   

19.
Calcium levels in the presynaptic nerve terminal are altered by several pathways, including voltage-gated Ca(2+) channels, the Na(+)/Ca(2+) exchanger, Ca(2+)-ATPase, and the mitochondria. The influx pathway for homeostatic control of [Ca(2+)](i) in the nerve terminal has been unclear. One approach to detecting the pathway that maintains internal Ca(2+) is to test for activation of Ca(2+) influx following Ca(2+) depletion. Here, we demonstrate that a constitutive influx pathway for Ca(2+) exists in presynaptic terminals to maintain internal Ca(2+) independent of voltage-gated Ca(2+) channels and Na(+)/Ca(2+) exchange, as measured in intact isolated nerve endings from mouse cortex and in intact varicosities in a neuronal cell line using fluorescence spectroscopy and confocal imaging. The Mg(2+) and lanthanide sensitivity of the influx pathway, in addition to its pharmacological and short hairpin RNA sensitivity, and the results of immunostaining for transient receptor potential (TRP) channels indicate the involvement of TRPC channels, possibly TRPC5 and TRPC1. This constitutive Ca(2+) influx pathway likely serves to maintain synaptic function under widely varying levels of synaptic activity.  相似文献   

20.
Qiu J  Wang CG  Huang XY  Chen YZ 《Life sciences》2003,72(22):2533-2542
Many stimulants, including bradykinin (BK), can induce increase in [Ca(2+)](i) in PC12 cells. Bradykinin induces an increase in [Ca(2+)](i) via intracellular Ca(2+) release and extracellular Ca(2+) influx through the transduction of G protein, but not through voltage-sensitive calcium channels. In this experiment, We analyzed how corticosterone (Cort) influences BK-induced intracellular Ca(2+) release and extracellular Ca(2+) influx, and further studied the mechanism of glucocorticoid's action. To dissociate the intracellular Ca(2+) release and extracellular Ca(2+) influx induced by BK, the Ca(2+)-free/Ca(2+)- reintroduction protocol was used. The results were as follows: (1) The Ca(2+) influx induced by BK could be rapidly inhibited by Cort, but intracellular Ca(2+) release could not be affected significantly. (2) The inhibitory effect of Cort-BSA (BSA -conjugated Cort) on Ca(2+) influx induced by BK was the same as the effect of free Cort. (3) Protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) could mimic and PKC inhibitor G?6976 could reverse the inhibitory effect of Cort. (4) There was no inhibitory effect of Cort on Ca(2+) influx induced by BK when pretreated with pertussis toxin. The results suggested, for the first time, that Cort might act via a putative membrane receptor and inhibit the Ca(2+) influx induced by BK through the pertussis toxin -sensitive G protein-PKC pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号