首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our recent in vitro results [4] indicate that cigarette smoke induces oxidation of human plasma proteins and extensive oxidative degradation of the guinea pig lung, heart, and liver microsomal proteins, which is almost completely prevented by ascorbic acid. In this paper, we substantiate the in vitro results with in vivo observations. We demonstrate that exposure of subclinical or marginal vitamin C-deficient guinea pigs to cigarette smoke causes oxidation of plasma proteins as well as extensive oxidative degradation of the lung microsomal proteins. Cigarette smoke exposure also results in some discernible damage of the heart microsomal proteins. The oxidative damage has been manifested by SDS-PAGE, accumulation of carbonyl and bityrosine, as well as loss of tryptophan and protein thiols. Cigarette smoke exposure also induces peroxidation of microsomal lipids as evidenced by the formation of conjugated dienes, malondialdehyde, and fluorescent pigment. Cigarette smoke-induced oxidative damage of proteins and peroxidation of lipids are accompanied by marked drop in the tissue ascorbate levels. Protein damage and lipid peroxidation are also observed in cigarette smoke-exposed pair-fed guinea pigs receiving 5 mg vitamin C/animal/day. However, complete protection against protein damage and lipid peroxidation occurs when the guinea pigs are fed 15 mg vitamin C/animal/day. Also, the cigarette smoke-induced oxidative damage of proteins and lipid is reversed after discontinuation of cigarette smoke exposure accompanied by ascorbate therapy. The results, if extrapolated to humans, indicate that comparatively large doses of vitamin C may protect the smokers from cigarette smoke-induced oxidative damage and associated degenerative diseases.  相似文献   

2.
The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the + VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility.  相似文献   

3.
Vitamin E and oxidative stress   总被引:11,自引:0,他引:11  
Oxidative stress can result from or be enhanced by a large variety of conditions, including nutritional imbalance, exposure to chemical and physical agents in the environment, strenuous physical activities, injury, and hereditary disorders. While many enzymes and compounds are involved in protecting cells from the adverse effects of oxidative stress, vitamin E occupies an important and unique position in the overall antioxidant defense. The antioxidant function of vitamin E is closely related to the status of many dietary components. Vitamin E-depleted animals are generally more susceptible to the adverse effects of environmental agents than supplemented animals. Also, vitamin E supplementation is beneficial to certain groups of the population. However, supplementing vitamin E in experimental subjects maintained on a nutritionally adequate diet does not always provide additional protection. Differential metabolic responses in various organs and differences in experimental conditions often contribute in the discrepancies in the literature. The lack of clear evidence for the occurrence of lipid peroxidation or antioxidant function of vitamin E in vivo can be attributed partly to the presence of active pathways for metabolizing hydroperoxides, aldehydes, and other oxidation products. Specific and sensitive techniques for measuring lipid peroxidation products in biological systems are essential for understanding the role of free radical-induced lipid peroxidation in tissue damage and antioxidant function of vitamin E in vivo.  相似文献   

4.
Ascorbate is a strong antioxidant; however, it can also act as a prooxidant in vitro by reducing transition metals. To investigate the in vivo relevance of this prooxidant activity, we performed a study using guinea pigs fed high or low ascorbate doses with or without prior loading with iron dextran. Iron-loaded animals gained less weight and exhibited increased plasma beta-N-acetyl-D-glucosaminidase activity, a marker of tissue lysosomal membrane damage, compared with control animals. The iron-loaded animals fed the low ascorbate dose had decreased plasma alpha-tocopherol levels and increased plasma levels of triglycerides and F(2)-isoprostanes, specific and sensitive markers of in vivo lipid peroxidation. In contrast, the two groups of animals fed the high ascorbate dose had significantly lower hepatic F(2)-isoprostane levels than the groups fed the low ascorbate dose, irrespective of iron load. These data indicate that 1) ascorbate acts as an antioxidant toward lipids in vivo, even in the presence of iron overload; 2) iron loading per se does not cause oxidative lipid damage but is associated with growth retardation and tissue damage, both of which are not affected by vitamin C; and 3) the combination of iron loading with a low ascorbate status causes additional pathophysiological changes, in particular, increased plasma triglycerides.  相似文献   

5.
Expression of multiple drug resistant (MDR) phenotype and over-expression of P-glycoprotein (P-gp) in the human hepatocellular carcinoma (HCC) cell clone P1(0.5), derived from the PLC/PRF/5 cell line (P5), are associated with strong resistance to oxidative stress and a significant (p < 0.01) increase in intracellular vitamin E content as compared with the parental cell line. This study evaluates the role of vitamin E in conferring resistance to drugs and oxidative stress in P1(0.5) cells. Parental drug-sensitive cells, P5, were incubated in alpha-tocopherol succinate (alpha-TS, 5 microM for 24 h) enriched medium to increase intracellular vitamin E content to levels comparable to those observed in P1(0.5) cells at basal conditions. Susceptibility to lipid peroxidation and oxidative DNA damage were assessed by measuring the concentration of thiobarbituric-reactive substances (TBARS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) at basal and after experimental conditions. Cell capacity to form colonies and resistance to doxorubicin were also studied. P5 cells, treated with alpha-TS, became resistant to ADP-Fe3+ and to ionizing radiation-induced lipid peroxidation as P1(0.5) cells. Exposure to ADP-Fe3+ or ionizing radiation increased TBARS and the 8-OHdG content in the P5 cells, while vitamin E enrichment abolished these effects. Irradiation doses at 5 cGy increased TBARS and 8-OHdG. They also inhibited cell capacity to form colonies in the untreated P5 cells. Incubation with alpha-TS fully reverted this effect and significantly (p < 0.01) reduced the inhibitory effect of cell proliferation induced by irradiation doses at >500 cGy. Resistance to doxorubicin was not affected by alpha-TS. These observations demonstrate the role of vitamin E in conferring protection from lipid peroxidation, ionizing radiation and oxidative DNA damage on the human HCC cell line. They also rule out any role of P-gp over-expression as being responsible for these observations in cells with MDR phenotype expression.  相似文献   

6.
Vitamin E, physical exercise and tissue damage in animals   总被引:2,自引:0,他引:2  
L Packer 《Medical biology》1984,62(2):105-109
  相似文献   

7.
《Mutation Research Letters》1995,346(4):195-202
The single cell gel test (SCG test or comet assay) was used to study DNA damage in peripheral white blood cells (WBC) of humans after a single bout of exhaustive exercise and the effect of vitamin supplementation. Human subjects were asked to run on a treadmill until exhaustion and blood samples were taken before and 24 h after the run. A clear increase in DNA strand breakage was observed in the 24-h sample of all probands. A short-term application of multivitamin pills or vitamin E (3 × 800 mg) resulted in a significantly smaller increase of DNA effects in WBC of some probands. When the volunteers were given a supplement of vitamin E (1200 mg daily) for 14 days prior to run, exercise-induced DNA damage was clearly reduced in all probands. In four out of five subjects, vitamin supplementation completely prevented the induction of DNA damage after exhaustive exercise. Intake of vitamin E for 14 days led to a clear increase in vitamin E serum concentrations. Malondialdehyde (MDA), a marker of lipid peroxidation, was measured in the serum of probands in tests with and without vitamin supplementation for 14 days. MDA concentrations were significantly decreased following vitamin E supplementation but not significantly changed 15 min and 24 h after a run. Our results demonstrate that vitamin E prevents exercise-induced DNA damage and indicate that DNa breakage occurs in WBC after exhaustive exercise as a consequence of oxidative stress.  相似文献   

8.
Vitamin E is a major chain-breaking antioxidant which is able to reduce liver oxidative damage without modifying aerobic capacity in T(3)-treated rats. We investigated whether vitamin E has similar effects in hyperthyroid state induced by cold exposure. Cold exposure increased aerobic capacity and O(2) consumption in homogenates and mitochondria and tissue mitochondrial protein content. Vitamin E did not modify aerobic capacity and mitochondrial protein content of cold liver, but increased ADP-stimulated respiration of liver preparations. Succinate-supported H(2)O(2) release rates were increased by cold during basal and stimulated respiration, whereas the pyruvate/malate-supported ones increased only during basal respiration. Vitamin administration to cold-exposed rats decreased H(2)O(2) release rates with both substrates during basal respiration. This effect reduced ROS flow from mitochondria to cytosol, limiting liver oxidative damage. Cold exposure also increased mitochondrial capacity to remove H(2)O(2), which was reduced by vitamin treatment, showing that the antioxidant also lowers H(2)O(2) production rate. The different effects of cold exposure and vitamin treatment on H(2)O(2) generation were also found in the presence of respiration inhibitors. Although this can suggest that the cold and vitamin induce opposite changes in mitochondrial content of autoxidizable electron carriers, it is likely that vitamin effect is due to its capacity to scavenge superoxide radical. Finally, vitamin E reduced mitochondrial oxidative damage and susceptibility to oxidants, and prevented Ca(2+)-induced swelling elicited by cold. In the whole, our results suggest that vitamin E is able to maintain aerobic capacity and attenuate oxidative stress of hepatic tissue in cold-exposed rats modifying mitochondrial population characteristics.  相似文献   

9.
Hypercholesterolemia (HC) is an independent risk factor for the onset and progression of renal disease. HC induces oxidative stress (OS) in the kidney; Vitamin E (Vit.E), an antioxidant, slows the progression of OS in the kidney. This study was to investigate if Vit.E regresses the HC-induced OS, and the regression is associated with an increase in the antioxidant reserve (AR). The studies were carried out in four groups of rabbits. The kidneys were removed under anesthesia. OS and AR in the renal tissue were assessed by measuring malondialdetyde (MDA) and chemiluminescent (CL) activity, respectively. High-cholesterol diet elevated the serum total cholesterol (TC), and the regular diet with or without Vit.E following a high-cholesterol diet reduced the serum TC to control levels. HC increased the MDA levels of kidney by 5.54-fold compared to control. The MDA contents of the kidneys in groups on regular diet with or without Vit.E were, respectively, 56 and 53 % lower than the control group. The CL activity in the control group was 12.15 ± 0.73 × 106 RLU/mg protein. The CL activity in HC group was 45.26 % lower than that in control, indicating an increase in AR. The regular diet with or without Vit.E following high-cholesterol diet normalized the CL activity/AR. In conclusion, HC increases OS in the kidney; reduction of serum cholesterol by regular diet regresses the renal OS but Vit.E does not regress HC-induced OS in kidney.  相似文献   

10.
Vitamin E suppresses the hypercholesterolemia-induced cardiac oxidative stress. The objectives were to investigate: if vitamin E regresses the hypercholesterolemia-induced oxidative stress in hearts and if regression is associated with decreases in the antioxidant reserve. The rabbits were assigned to 4 groups: I, regular diet (2-months); II, 0.25 % cholesterol diet (2-months); III, 0.25 % cholesterol diet (2-months) followed by regular diet (2-months); and IV, 0.25 % cholesterol diet (2-months) followed by regular diet with vitamin E (2-months). Blood samples were collected before and at the end of protocol for the measurement of total cholesterol (TC). Hearts were removed at the end of the protocol under anesthesia for the assessment of oxidative stress parameters, malondialdehyde (MDA), and tissue chemiluminescent (CL) activity. High cholesterol diet increased the serum levels of TC, and regular diet with or without vitamin E reduced the TC levels to a similar extent. The MDA content of the heart in groups I, II, III, and IV were 0.074 ± 0.015, 0.234 ± 0.016, 0.183 ± 0.028 and 0.169 ± 0.016 nmol/mg protein, respectively. Regular diet following high cholesterol diet reduced the MDA levels (0.234 ± 0.016 vs. 0.183 ± 0.028 nmol/mg protein but vitamin E did not reduce the MDA levels. The cardiac-CL activities were similar in groups’ I, II, and III (30.11 ± 0.7 × 106, 32.9 ± 1.43, and 37.92 ± 8.35 × 106 RLU/mg protein). The activity decreased in group IV, suggesting that vitamin E increased the antioxidant reserve while lowering serum cholesterol did not increase antioxidant reserve. In conclusion, hypercholesterolemia increases cardiac oxidative stress and regular diet regresses hypercholesterolemia-induced oxidative stress but vitamin E does not further regress hypercholesterolemia-induced cardiac oxidative stress. Vitamin E reduces oxidative stress in the heart tissue in spite of a decrease in CL activity (increase in antioxidant reserve).  相似文献   

11.
In the present study we have investigated if administration of nonylphenol-induced oxidative stress in various subcellular fractions of adult rat testis and the effect of vitamin E on reactive oxygen species mediated nonylphenol toxicity. Male rats were administered orally with nonylphenol at 1, 10 and 100 microg/kg body weight per day for 45 days with and without supplementation of vitamin E (20 mg/kg body weight). In nonylphenol-treated rats the activities of antioxidant enzymes superoxide dismutase and glutathione reductase decreased significantly while the levels of lipid peroxidation increased significantly in the crude homogenate and in the mitochondrial and microsome-rich fractions of testis. Co-administration of nonylphenol and vitamin E did not cause changes in the activities of antioxidant enzymes in various subcellular fractions of rat testis. The results suggest that graded doses of nonylphenol elicit depletion of antioxidant defence system in rat testis, indicating nonylphenol induced oxidative stress in the testis of rats which could be reversed by the administration of vitamin E.  相似文献   

12.
Vitamin A deficiency causes oxidative damage to liver mitochondria in rats   总被引:4,自引:0,他引:4  
Mitochondrial damage in rat liver induced by chronic vitamin A-deficiency was studied using three different groups of rats: (i) control rats, (ii) rats fed a vitamin A-free diet until 50 d after birth and (iii) vitamin A-deficient rats re-fed a control diet for 30 d. No statistical difference in body weight and food intake was found between control and vitamin A-deficient rats. Liver GSH concentration was similar in both groups. However, in vitamin A-deficient rats, the mitochondrial GSH/GSSG ratio was significantly lower and the levels of malondialdehyde (MDA) and 8-oxo-7, 8-dihydro-2'-deoxyguanosine (oxo8dG) were higher when compared to control rats. These values were partially restored in re-fed rats. The mitochondrial membrane potential of vitamin A-deficient rats was significantly lower than in control rats and returned to normal levels in restored vitamin A rats. Two populations of mitochondria were found in vitamin A-deficient rats according to the composition of membrane lipids. One population showed a similar pattern to the control mitochondria and the second population had a higher membrane lipid content. This report emphasizes the protective role of vitamin A in liver mitochondria under physiological circumstances.  相似文献   

13.
The enzyme 8-oxoguanine DNA glycosylase 1 participates in the repair of damaged DNA by excising the oxidized base 8-hydroxy-2'-deoxyguanosine. We have previously demonstrated that enzymatic activity of this enzyme is inversely related to the levels of the damaged base in specific brain regions. We now report that the activity of 8-oxoguanine DNA glycosylase 1 is increased in a region-specific manner following treatment with diethylmaleate, a compound that reduces glutathione levels in the cell. A single treatment with diethylmaleate elicited a significant increase ( approximately 2-fold) in the activity of 8-oxoguanine DNA glycosylase 1 in three brain regions with low basal levels of activity (cerebellum, cortex, and pons/medulla). There was no change in the activity of 8-oxoguanine DNA glycosylase 1 in those regions with high basal levels of activity (hippocampus, caudate/putamen, and midbrain). This is the first report to demonstrate that DNA repair capacity can be upregulated in the CNS, and the increased repair activity correlates with a reduction in the levels of DNA damage. The brain region-specific capacity to deal with increased oxidative damage to DNA may be responsible, in part, for the vulnerability of specific neuronal populations with aging, sources of oxidative stress, and neurodegenerative diseases.  相似文献   

14.
We examined the effects of dietary vitamin E (VE) on oxidative damage to DNA and lipids in the liver a few days after total body irradiation (TBI). ODS rats, which lack vitamin C synthesis, were fed either a low VE diet (4.3 λmg λVE/kg) or a basal VE diet (75.6 λmg λVE/kg) for 5 weeks while vitamin C was supplied in the drinking water. The VE level in the liver of the low VE group was lower and the levels of lipid peroxides were higher compared to those of the basal VE group: the relative levels in the two groups were 1:30 for VE, 18:1 for 4-hydroxynonenal (HNE), and 10:1 for hexanal (HA). The level of 8-hydroxydeoxyguanosine (8OHdG), a marker of oxidative DNA damage, did not differ between the low VE and the basal VE groups. When the rats received TBI at the dose of 3 λGy and were killed on day 6, the levels of HNE, HA and 8OHdG increased by 2.2-, 2-, and 1.5-times, respectively, in the low VE group, but TBI did not cause such increases in the basal VE group. Changes in antioxidative enzymes (glutathione peroxidase, catalase, and Cu/Zn-SOD) in the liver could not explain the different responses of the two diet groups to TBI-induced oxidative damage. The concentrations of vitamin C and glutathione in the liver did not differ between the two groups. These results suggest that dietary VE can prevent the oxidative damage to DNA and lipids in the liver which appear a few days after TBI at dose of 3 λGy.  相似文献   

15.
Reactive oxygen species (ROS) have been implicated in the cellular membrane damage and postoperative morbidity associated with obligatory ischemia-reperfusion (I-R) during vascular surgery. Thus, a clinical study was undertaken to evaluate the effects of ascorbate prophylaxis on ROS exchange kinetics in 22 patients scheduled for elective abdominal aortic aneurysm (AAA) or infra-inguinal bypass (IIB) repair. Patients were assigned double-blind to receive intravenous sodium ascorbate (2 g vitamin C, n=10) or placebo (0.9% saline, n=12) administered 2 h prior to surgery. Blood samples were obtained from the arterial and venous circulation proximal to the respective sites of surgical repair (local) and from an antecubital vein (peripheral) during cross-clamping (ischemia) and within 60 s of clamp release (reperfusion). Ascorbate supplementation increased the venoarterial concentration difference (v-adiff) of lipid hydroperoxides (LH), interleukin (IL)-6 and vascular endothelial growth factor (VEGF) protein during ischemia. This increased the peripheral concentration of LH, total creatine phosphokinase (CPK), and VEGF protein during reperfusion (P<0.05 vs placebo). Electron paramagnetic resonance (EPR) spectroscopy confirmed that free iron was available for oxidative catalysis in the local ischemic venous blood of supplemented patients. An increased concentration of the ascorbate radical (A.-) and alpha-phenyl-tert-butylnitrone (PBN) adducts assigned as lipid-derived alkoxyl (LO.) and alkyl (LC.) species were also detected in the peripheral blood of supplemented patients during reperfusion (P<0.05 vs ischemia). In conclusion, these findings suggest that ascorbate prophylaxis may have promoted iron-induced oxidative lipid damage via a Fenton-type reaction initiated during the ischemic phase of surgery. The subsequent release of LH into the systemic circulation may have catalyzed formation of second-generation radicals implicated in the regulation of vascular permeability and angiogenesis.  相似文献   

16.
17.
Summary

Progression to kidney failure in a number of major renal diseases is now thought to be significantly worsened by oxidative stress at the biochemical level. Evidence is accumulating that the rate of deterioration could, in many cases, be slowed down to a more acceptable level by the simple expedient of dietary supplementation with the antioxidant, vitamin E. Evidence for the potential use of vitamin E as an adjunctive therapy to help prolong kidney function in conditions that are accelerated by oxidative stress is discussed.  相似文献   

18.
The fragmentation of the membrane protein monoamine oxidase in submitochondrial particles was induced by defined free radicals during radiolysis and by a system dependent on hydrogen peroxide and a transition metal. By injection of alpha-tocopherol in vivo, the levels of this physiological antioxidant in the mitochondrial preparations could be elevated more than ten-fold. In both radical-generating systems the presence of high levels of alpha-tocopherol in the membrane substantially retarded the protein fragmentation, in parallel with lipid peroxidation. It is suggested that membrane-bound proteins are damaged during lipid peroxidation and that alpha-tocopherol protects cells against both types of damage.  相似文献   

19.
A study was made the influence exerted by non-enzymatic glycosylation (glycation) and oxidative destruction on structural and functional parameters of actin (free NH2-groups, advanced glycation end product and bityrosine cross-linking content, DNase inhibition by G-actin and myosin Mg(2+)-ATPase activation by F-actin). The functional properties of actin were shown to change under high molecular weight product formation and oxidative destruction: the extent of DNAase I inhibition decreases (from 70 to 40%) and the extent of myosin Mg(2+)-ATPase decreases (by 40%). Carnosine prevents actin oligomer formation and oxidative destruction which favours preservation of the protein functional properties.  相似文献   

20.
植物VE合成相关酶基因克隆及VE在体内功能研究进展   总被引:1,自引:0,他引:1  
维生素E(VE)的天然产物有8种类型, 分别为a、b、g、d-生育酚(tocopherol)和a、b、g、d-生育三烯酚(tocotrienol), 对植物、动物和人类都具有十分重要的生理作用。医学证明, 维生素E不仅与生殖系统,而且与中枢神经系统、消化系统、心血管系统和肌肉系统的正常代谢都有密切关系; 它也是治疗冠心病、动脉粥样硬化、贫血、脑软化、肝病和癌症等的辅助药物。而绿色植物则是人类和动物VE的基本来源。近年来随着植物基因组学的发展和营养基因组学概念的提出, 通过快速分离植物营养代谢(VE)相关酶的基因, 最终解析和调控植物微量营养素代谢途径, 利用代谢工程的方法大大提高植物营养价值之策略正在逐步完善。本文对有关植物中VE生物合成途径和相关酶基因克隆研究现状, 以及VE在植物体 内的作用和功能研究进展进行了综述, 以期为VE作用机理的探寻和功能开发提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号