首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit muscle lactate dehydrogenase (EC 1.1.1.27) was attached covalently to the inner surface of nylon tubing; a modified technique, involving benzidine and glutaraldehyde, was used, and the resulting immobilized enzyme showed no loss of activity over a period of several months. An experimental study was made of the flow kinetics for the reaction between pyruvate and reduced nicotinamide adenine dinucleotide in two limiting cases, one substrate in excess and the concentration of the other one varied. A range of flow rates and temperatures was covered. The results were analyzed in various ways on the basis of the Kobayashi--Laidler treatment of flow systems. It was concluded that the kinetics are largely diffusion-controlled, especially at the lower substrate concentrations and flow rates. The values of the apparent Michaelis constants vary with flow rate vf, being linear in vf-1/3, and the values extrapolated to infinite flow rate (vf-1/3 = 0) approach the values for the enzyme in free solution. Analysis of the rates led to activation energies for the diffusion of the two substrates.  相似文献   

2.
Urease was immobilized on O-alkylated nylon tubes coated with polyaminated derivatives of starch or dextran. The specific activity of the enzyme coil and the relative stability of the immobilized enzyme, compared with immobilized urease derived from other nylon tube modifications, were enhanced. Also, the nonspecific binding of urease to O-alkylated nylon tubes was virtually eliminated by the coating process.  相似文献   

3.
Analogous soluble and insoluble derivatives of subtilisin Novo (EC 3.4.21.14) were prepared by coupling the enzyme to CNBr-activated DEAE-dextran and DEAE-Sephadex, respectively. The DEAE-dextran-subtilisin displayed pH optima and Km values for ester hydrolysis similar to subtilisin, whereas the pH versus activity profiles obtained with DEAE-Sephadex-subtilisin were shifter towards the alkaline pH region and the Km values were increased. Compared with subtilisin, DEAE-dextran-subtilisin showed a 40-65% reduction of kcat for hydrolysis of N-acetyl-L-tyrosine ethyl ester, p-tosyl-L-arginine methyl ester and benzyloxycarbonyl-glycyl-L-tyrosinamide and its maximum velocities for digestion of casein and clupein also amounted to 40-60% of the subtilisin values. With Deae-sephadex-subtilisin, in contrast, the maximum velocity of hydrolysis decreased to a greater extent for polypeptide substrates compared to ester substrates. The present results indicate that the chemical nature of a support can effect intrinsic properties of a matrix-bound enzyme in addition to the steric and diffusional effects usually observed with polymer-attached enzymes.  相似文献   

4.
5.
Preparation and properties of solid-supported urease   总被引:1,自引:0,他引:1  
  相似文献   

6.
Flow kinetics of L-asparaginase attached to nylon tubing   总被引:1,自引:0,他引:1  
L -Asparaginase has been attached by chemical means to the inner surface of nylon tubing. An experimental study has been carried out of the flow kinetics for such a system, asparagine solutions at various concentrations being passed through two lengths of tubing at various flow rates. Measurements were made of the concentration of the product ammonia at the tube exit, and of the rate of formation of ammonia, under the various conditions. Apparent Michaelis constants, Km(app), were some three orders of magnitude higher than the Km for the enzyme in free solution (~13 × 10?6JM). The results were analyzed with respect to the theoretical treatment described in the preceding paper (Kobayashi and Laidler), three different methods being employed. It is concluded that at lower substrate concentrations and flow rates the reactions are largely diffusion-controlled, the enhanced Km(app) values being largely if not entirely due to the diffusion control; ionic strength studies showed electrostatic repulsion effects to be unimportant. At high concentrations and high flow rates (when the diffusion layer is of negligible thickness) the diffusional effects are minimized, and Km(app) approaches the true Km value for the immobilized enzyme.  相似文献   

7.
Nylon-linked proteins were used for affinity trapping and chromatography. As representative examples purified acetylcholine receptor, alpha-cobratoxin and bovine serum albumin were coupled to the activated matrix to serve as biospecific ligands. In particular, acetylcholine receptor was coupled without significant loss of biochemical properties. The resulting affinity tubes bind receptor-specific ligands including immunoglobulins and thus can be used for affinity-chromatographic purposes and immunoassays.  相似文献   

8.
Urease was bound to commercially available nonwoven nylon fabric filters. Multilayer immobilized-enzyme filter reactors were constructed by packing varying numbers of urease-nylon filters in a column. Owing to the relatively open structure and high mechanical strength of the filter fabric, compaction and pressure drop effects were minimal. The reactors could be operated in a wide range of substrate concentrations and flow rates under conditions where mass-transfer limitations could be neglected. The kinetic behavior of the immobilized-enzyme filter reactors could be described by a linear form of the integrated Michaelis-Menten equation using a model based on the sequential action of the enzyme filters.  相似文献   

9.
10.
Poly (acrylonitrile-methylmethacrylate-sodium vinylsulfonate) membranes were subjected to seven different chemical modifications. The amounts of new groups incorporated in the membranes with the modifications were determined. Urease was covalently immobilized on the modified membranes. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity was found for urease bound to membranes modified with hydroxylammonium sulfate (68%) and hydrazinium sulfate (67%). Optimum pH of free urease was determined to be 5.8. For positively charged membranes, pH optimum was shifted to higher values, while for negatively charged membranes-to lower pH. The charge of the matrix affected also the rate of the enzyme reaction. The highest rate was measured with urease immobilized on membranes modified with hydroxylammonium sulfate and hydrazinium sulfate. The major part of the immobilized enzyme on different modified membranes remained stable-only ca. 20% of enzyme activity was lost for 4 h at 70 degrees C while the free enzyme was totally inactivated.  相似文献   

11.
Immobilization of mold aminoacylase (N-acylamino acid amidohydrolase, EC 3.5.1.14) was investigated by covalently binding the enzyme to halogenoacetylcelluloses. As a result, the iodoacetylcellulose was found to be the best carrier among the halogenoacetylcelluloses. The yield of activity of the insoluble aminoacylase relative to that of the native aminoacylase used was 40–50%, and the specific activities of both enzyme preparations were the same within the limits of error of the estimation.  相似文献   

12.
Some properties and purifications of urease   总被引:4,自引:0,他引:4  
  相似文献   

13.
14.
Urease was encapsulated within kappa-carrageenan beads. Various parameters, such as amount of kappa-carrageenan and enzyme activity, were optimized for the immobilization of urease. Immobilized urease was thoroughly characterized for pH, temperature, and storage stabilities and these properties were compared with the free enzyme. The free urease activity quickly decreased and the half time of the activity decay was about 3 days at 4 degrees C. The immobilized urease remained very active over a long period of time and this enzyme lost about 70.43% of its orginal activity over the period of 26 days for storage at 4 degrees C. The Michaelis constant (Km) and maximum reaction velocity (Vmax) were calculated from Lineweaver-Burk plots for both free and immobilized enzyme systems. Vmax = 227.3 U/mg protein, Km = 65.6 mM for free urease and Vmax = 153.9 U/mg protein, Km = 96.42 mM for immobilized urease showed a moderate decrease of enzyme specific activity and change of substrate affinity.  相似文献   

15.
Urease (EC 3.5.1.5) catalyses the hydrolysis of urea to ammonia and carbon dioxide. The enzyme fromSporobolomyces roseus was enriched 780-fold and purified to apparent homogeneity using heat treatment, ion exchange chromatography on Q-Sepharose fast flow, hydrophobic interaction chromatography on Phenyl-Sepharose, size exclusion chromatography on Sephacryl S 300 HR, and ion exchange chromatography on MonoQ. Analysis of the purified enzyme by SDS-PAGE demonstrated the presence of subunits with a molecular weight of 90 (± 4) kDa. The M r of the native enzyme was estimated by size exclusion chromatography to be 340 (± 30) kDa, suggesting a tetrameric structure different from other ureases isolated so far from both prokaryotes and eukaryotes. The enzyme was heat-stable, showing no loss of activity after incubation at 70 °C for 15 min. The highest urease activities were observed after growth on media containing urea as the sole source of nitrogen.  相似文献   

16.
17.
The urease proteins of the jack bean (Canavalia ensiformis) and Helicobacter pylori are similar in molecular mass when separated by non-denaturing gradient polyacrylamide gel electrophoresis, both having three main forms. The molecular mass of their major protein form is within the range 440-480 kDa with the other two lesser forms at 230-260 kDa and 660-740 kDa. These forms are all urease active; however, significant kinetic differences exist between the H. pylori and jack bean ureases. Jack bean urease has a single pH optimum at 7.4, whereas H. pylori urease has two pH optima of 4.6 and 8.2 in barbitone and phosphate buffers that were capable of spanning the pH range 3 to 10. The H. pylori Km was 0.6 mM at pH 4.6 and 1.0 mM at pH 8.2 in barbitone buffer, greater than 10.0 mM, and 1.1 mM respectively in phosphate buffer and also greater than 10.0 mM in Tris.HCl at pH 8.2. By comparison, the jack bean urease had a Km of 1.3 mM in Tris.HCl under our experimental conditions. The findings show that the urease activity of H. pylori was inhibited at the pH optimum of 4.6 in the phosphate buffer, but not in the barbitone buffer. This was shown to be due to competitive inhibition by the sodium and potassium ions in the phosphate buffer, not the phosphate ions as suggested earlier. Jack bean urease activity was similarly inhibited by phosphate buffer but again due to the effect of sodium and potassium ions.  相似文献   

18.
The kinetic properties of microencapsulated urease   总被引:1,自引:0,他引:1  
  相似文献   

19.
Polymethylglutamate (PMG), a synthetic polypeptide, was used as a new carrier to immobilize urease (EC 3.5.1.5) and uricase (EC 1.7.3.3) by the azide method. The enzymes could be immobilized onto PMG in various forms, such as film, fiber, coating on various beads, and a silicon tube. The retained activities of the immobilized enzymes were excellent (more than 95%), therefore it was possible to immobilized almost all activities of the enzymes added in the coupling mixtures. Heat stabilities of the resulting immobilized enzymes were markedly improved, while the optimal pH and Km values remained almost unchanged. The urease immobilized on the PMG-coated glass beads packed in a column, was found to retain its activity more than 80% of the initial value, even after the occasional use for a year. In view of the improved retained activities and stabilities of the immobilized enzymes, PMG may therefore be a very versatile matrix for the immobilized enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号