共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies to distinctive epitopes on the alpha and beta subunits of the fibronectin receptor 总被引:10,自引:0,他引:10
Monoclonal antibodies (MAbs) have been developed that can recognize epitopes that are unique to either the alpha or beta subunit of the fibronectin receptor (FnR). MAbs 11B4 and 7A8 immunoblot the alpha subunit of FnR either in purified form from Chinese hamster ovary (CHO) cells or in nonionic detergent extracts of cells of human and rodent origin electrophoresed under reducing or nonreducing conditions. The MAbs seem to be more reactive to the subunit when it has been electrophoresed under reducing conditions, suggesting that the epitope may be partially masked by the conformation conferred by disulfide bonding. A second set of MAbs, 7E2 and 7F9, is directed to an epitope on the beta subunit that is conformationally dependent upon disulfide bonding, as reduction of the subunit leads to loss of reactivity with both MAbs. Further, 7E2/7F9 immunoblots of nonionic detergent extracts of CHO cells, run under nonreducing conditions, reveal the presence of a third band (90-kDa), immunologically related to the beta subunit, which is not surface-labeled with 125I in intact cells and which does not copurify with the alpha and beta subunits isolated by immunoaffinity purification of FnR using the MAb PB1. The 90-kDa component is not found associated with a plasma membrane fraction prepared by crude cell fractionation, but is abundant in a low-speed pellet containing nuclei and intracellular membranes. This finding suggests that the 90-kDa component is a precursor to the beta subunit. Finally, the epitope of 7E2/7F9 is unique to CHO cells, as cross-reactivity to other cell types cannot be demonstrated by either immunoblotting or immunoprecipitation. 相似文献
2.
Concurrent synthesis of overlapping octameric peptides corresponding to the sequence of the Torpedo acetylcholine receptor (AChR) alpha subunit has been carried out on polypropylene supports functionalized with primary amino groups according to a method developed by M. Geysen [(1987) J. Immunol. Methods 102, 259-274]. The peptides on the solid supports have been used in an enzyme-linked immunosorbent assay. Interactions of the synthetic peptides with antibodies are then detected without removing them from the solid support. By this procedure, epitopes of both antisera and monoclonal antibodies to the Torpedo acetylcholine receptor, its subunits, and synthetic peptide fragments have been mapped. Both rat and rabbit antisera to the alpha subunit show major epitopes spanning the residues 150-165, 338-345, and 355-366 on the Torpedo AChR alpha subunit. Epitopes of monoclonal antibodies to these major epitopes and to others have been rather precisely mapped by using this technique with peptides of varying lengths. The specificity of several of these mAbs are of interest because they have been used in mapping the transmembrane orientation of the AChR alpha-subunit polypeptide chain. 相似文献
3.
Wu P Ma D Pierzchala M Wu J Yang LC Mai X Chang X Schmidt-Glenewinkel T 《The Journal of biological chemistry》2005,280(22):20987-20994
The central nervous system of Drosophila melanogaster contains an alpha-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 M sodium chloride and then purified using an alpha-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 micromol of 125I-alpha-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-alpha-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s(20,w) of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila D alpha5 subunit by sequence comparison. A peptide-specific antibody raised against the D alpha5 subunit provides further evidence that this subunit is a component of an alpha-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila. 相似文献
4.
5.
6.
Muscarinic acetylcholine receptors (mAChR) are G protein-coupled receptors which are highly conserved across mammalian species. Chick cardiac mAChR, however, have been shown to be pharmacologically, immunologically, and biochemically distinct from m2 mAChR expressed in mammalian heart. We previously reported the isolation and characterization of a novel chicken mAChR, cm4, which is expressed in chick heart and brain. We report here the isolation of an additional chicken mAChR gene whose deduced amino acid sequence is most homologous to the mammalian m2 receptor. Northern blot analysis demonstrated that this chicken m2 gene is also expressed in chick heart and brain. When stably transfected into Chinese hamster ovary (CHO) cells and Y1 adrenal carcinoma cells, the chicken m2 gene expresses a receptor protein which exhibits high affinity binding for the muscarinic antagonist quinuclidinyl benzilate and atropine, as well as the M1-selective antagonist pirenzepine and the M2-selective antagonist AF-DX 116. Therefore, when expressed in two heterologous cell lines, the chick m2 receptor has pharmacological properties that are similar to the chick m4 receptor as well as those reported for endogenous mAChR in chick cardiac cells. Consistent with the properties of the chick m4, as well as mammalian m2 and m4 receptors, the chick m2 receptor was able to functionally couple to both the inhibition of adenylate cyclase and the stimulation of phosphoinositide metabolism when expressed in CHO cells, but only the inhibition of adenylate cyclase when expressed in Y1 cells. We conclude from this study that the embryonic chick heart expresses multiple subtypes of mAChR which are highly conserved with their mammalian counterparts. Furthermore, the high degree of conservation between the mammalian m2 and the chick m2 muscarinic receptors suggests that the pharmacological differences that exist between these receptors are due to a relatively small number of specific amino acid changes rather than larger changes in receptor sequence or structure. 相似文献
7.
Identification of a brain acetylcholine receptor alpha subunit able to bind alpha-bungarotoxin 总被引:2,自引:0,他引:2
Peptides corresponding to sequence segments homologous to an alpha-bungarotoxin (alpha-BGT) binding region on the alpha subunit of the Torpedo nicotinic cholinergic receptor (nAChR) were synthesized for each identified nAChR alpha subunit of the rat nervous system (alpha 1, which is expressed in muscle, and alpha 2, alpha 3, alpha 4, and alpha 5, which are expressed by neurons). The peptides were tested for their ability to directly bind 125I-alpha-BGT and to compete for 125I-alpha-BGT with Torpedo nAChR and with the alpha-BGT-binding component expressed by PC12, a sympathetic neuronal cell line. In addition to peptides of the muscle alpha 1 subunit, peptides corresponding to the sequence of a neuronal subunit, alpha 5, were able to bind 125I-alpha-BGT. Peptides containing the sequence segments 182-201 of the alpha 1 subunit and 180-199 of the alpha 5 subunit competed with Torpedo nAChR for 125I-alpha-BGT binding with IC50 values of 0.5 and 3.5 microM, respectively. Both of these peptides were also able to compete for 125I-alpha-BGT binding with native Torpedo nAChR and with the alpha-BGT-binding protein(s) expressed on PC12 cells. To determine if other sequence segments contribute to form the neuronal alpha-BGT-binding site, overlapping peptides corresponding to the putative extracellular domain of the alpha 5 subunit were synthesized and used both in direct binding assays and in competition experiments. Peptides corresponding to amino acids 16-35 and 180-199 of the alpha 5 subunit directly bound 125I-alpha-BGT and inhibited the binding of toxin to both Torpedo nAChR and PC12 cells. The results of these studies strongly support identification of the alpha 5 subunit as a component of a neuronal alpha-BGT-binding nAChR. 相似文献
8.
9.
10.
11.
Strassmaier T Bond CT Sailer CA Knaus HG Maylie J Adelman JP 《The Journal of biological chemistry》2005,280(22):21231-21236
The SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa band corresponding to the previously reported SK2 protein (SK2-S) and a novel 78-kDa form. Complementary DNA clones from brain and Western blots probed with an antibody specific for the longer form, SK2-L, identified the larger molecular weight isoform as an N-terminally extended SK2 protein. The N-terminal extension of SK2-L is cysteine-rich and mediates disulfide bond formation between SK2-L subunits or with heterologous proteins. Immunohistochemistry revealed that in brain SK2-L and SK2-S are expressed in similar but not identical patterns. Heterologous expression of SK2-L results in functional homomeric channels with Ca2+ sensitivity similar to that of SK2-S, consistent with their shared core and intracellular C-terminal domains. In contrast to the diffuse, uniform surface distribution of SK2-S, SK2-L channels cluster into sharply defined, distinct puncta suggesting that the extended cysteine-rich N-terminal domain mediates this process. Immunoprecipitations from transfected cells and mouse brain demonstrate that SK2-L co-assembles with the other SK subunits. Taken together, the results show that the SK2 gene encodes two subunit proteins and suggest that native SK2-L subunits may preferentially partition into heteromeric channel complexes with other SK subunits. 相似文献
12.
The unique cytoplasmic loop regions of the alpha 1, alpha 2, alpha 3, and alpha 5 subunits of the GABAA receptor were expressed in bacterial and used to produce subunit-specific polyclonal antisera. Antibodies immobilized on protein A-Sepharose were used to isolate naturally occurring alpha-specific populations of GABAA receptors from rat brain that retained the ability to bind [3H]muscimol, [3H]flunitrazepam, [3H]Ro15-1788, and [125I]iodo-clonazepam with high affinity. Pharmacological characterization of these subtypes revealed marked differences between the isolated receptor populations and was generally in agreement with the reported pharmacological profiles of GABAA receptors in cells transiently transfected with alpha 1 beta 1 gamma 2, alpha 2 beta 1 gamma 2, alpha 3 beta 1 gamma 2, and alpha 5 beta 1 gamma 2 combinations of subunits. Additional subtypes were also identified that bind [3H]muscimol but do not bind benzodiazepines with high affinity. The majority of GABAA receptor oligomers contains only a single type of alpha subunit, and we conclude that alpha 1, alpha 2, alpha 3, and alpha 5 subunits exist in vivo in combination with the beta subunit and gamma 2 subunit. 相似文献
13.
14.
K E McLane X D Wu R Schoepfer J M Lindstrom B M Conti-Tronconi 《The Journal of biological chemistry》1991,266(23):15230-15239
The relationship between neuronal alpha-bungarotoxin binding proteins (alpha BGTBPs) and nicotinic acetylcholine receptor function in the brain of higher vertebrates has remained controversial for over a decade. Recently, the cDNAs for two homologous putative ligand binding subunits, designated alpha BGTBP alpha 1 and alpha BGTBP alpha 2, have been isolated on the basis of their homology to the N terminus of an alpha BGTBP purified from chick brain. In the present study, a panel of overlapping synthetic peptides corresponding to the complete chick brain alpha BGTBP alpha 1 subunit and residues 166-215 of the alpha BGTBP alpha 2 subunits were tested for their ability to bind 125I-alpha BGT. The sequence segments corresponding to alpha BGTBP alpha 1-(181-200) and alpha BGTBP alpha 2-(181-200) were found to consistently and specifically bind 125I-alpha BGT. The ability of these peptides to bind alpha BGT was significantly decreased by reduction and alkylation of the Cys residues at positions 190/191, whereas oxidation had little effect on alpha BGT binding activity. The relative affinities for alpha BGT of the peptide sequences alpha BGTBP alpha 1-(181-200) and alpha BGTBP alpha 2-(181-200) were compared with those of peptides corresponding to the sequence segments Torpedo alpha 1-(181-200) and chick muscle alpha 1-(179-198). In competition assays, the IC50 for alpha BGTBP alpha 1-(181-200) was 20-fold higher than that obtained for the other peptides (approximately 2 versus 40 microM). These results indicate that alpha BGTBP alpha 1 and alpha BGTBP alpha 2 are ligand binding subunits able to bind alpha BGT at sites homologous with nAChR alpha subunits and that these subunits may confer differential ligand binding properties on the two alpha BGTBP subtypes of which they are components. 相似文献
15.
Biallas S Wilker S Lips KS Kummer W Grando SA Padberg W Grau V 《Life sciences》2007,80(24-25):2286-2289
The success of clinical lung transplantation is poor in comparison to other solid organ transplants and novel therapeutic approaches are badly needed. In the view of the recent discovery of anti-inflammatory pathways mediated via nicotinic acetylcholine receptors, we investigated changes in this system in pulmonary isografts and allografts by immunohistochemistry. Lung transplantation was performed in the isogeneic Lewis to Lewis rat strain combination. For allogeneic transplantation Dark Agouti rats were used as donors. Nicotinic alpha9 and alpha10 acetylcholine receptor subunits were detected on alveolar macrophages as well as in the lung parenchyma of native and transplanted lungs. The expression of both receptor subunits was up-regulated in the parenchyma of day 4 allografts. These allografts were characterized by accumulations of alveolar macrophages strongly expressing the alpha9 and the alpha10 receptor subunit. Therapeutic application of nicotinic agonists might down-modulate pro-inflammatory functions of alveolar macrophages and protect pulmonary transplants. 相似文献
16.
Antisera against an acetylcholine receptor alpha 3 fusion protein bind to ganglionic but not to brain nicotinic acetylcholine receptors 总被引:1,自引:0,他引:1
Neuronal nicotinic acetylcholine receptor (AChR) subtypes have been defined pharmacologically, immunologically, and by DNA cloning, but the correlations between these approaches are incomplete. Vertebrate neuronal AChRs that have been isolated are composed of structural subunits and ACh-binding subunits. A single kind of subunit can be used in more than one AChR subtype. Monoclonal antibody (mAb) 35 binds to structural subunits of subtypes of AChRs from both chicken brain and ganglia. By using antisera to a unique sequence of alpha 3 ACh-binding subunits expressed in bacteria, we show that ganglionic AChRs contain alpha 3 ACh-binding subunits, whereas the brain AChR subtype that binds mAb 35 does not. Subunit-specific antisera raised against recombinant proteins should be a valuable approach for identifying the subunit composition of receptors in multigene, multisubunit families. 相似文献
17.
The nicotinic acetylcholine (ACh) receptor belongs to a superfamily of synaptic ion channels that open in response to the binding of chemical transmitters. Their mechanism of activation is not known in detail, but a time-resolved electron microscopic study of the muscle-type ACh receptor had suggested that a local disturbance in the ligand-binding region and consequent rotations in the ligand-binding alpha subunits, connecting to the transmembrane portion, are involved. A more precise interpretation of this structural change is given here, based on comparison of the extracellular domain of the ACh receptor with an ACh-binding protein (AChBP) to which a putative agonist is bound. We find that, to a good approximation, there are two alternative extended conformations of the ACh receptor subunits, one characteristic of either alpha subunit before activation, and the other characteristic of all three non-alpha subunits and the protomer of AChBP. Substitution in the three-dimensional maps of alpha by non-alpha subunits mimics the changes seen on activation, suggesting that the structures of the alpha subunits are modified initially by their interactions with neighbouring subunits and switch to the non-alpha form when ACh binds. This structural change, which entails 15-16 degrees rotations of the inner pore-facing parts of the alpha subunits, most likely acts as the trigger that opens the gate in the membrane-spanning pore. 相似文献
18.
GABA(A) receptors, mediators of fast inhibitory neurotransmission, are heteropentameric assemblies from a large array of subunits. Differences in the sensitivity of receptor subtypes to endogenous GABA may permit subunit-dependent finely tuned responsiveness to the same GABAergic inputs. Using both radioligand binding and electrophysiology combined with mutagenesis, we identified a domain of four amino acids within the alpha subunits that mediates the distinct sensitivities to GABA allowing their selective switch between alphabeta3gamma2 combinations. Replacing this domain in alpha3 by the corresponding segments of alpha1-alpha5 resulted in mutant receptors displaying the GABA EC(50) values of the respective wild-type receptors. Vice versa, the alpha3 motif forced the low sensitivity to GABA of alpha3 upon alpha1beta3gamma2, alpha4beta3gamma2, and alpha5beta3gamma2. Binding of the GABA agonist [(3)H]muscimol was not affected by the exchange of the motif between alpha1 and alpha3 subunits. Thus, the equilibrium binding pocket is maintained upon replacement of the four amino acids. Taken together our data suggest that the identified motifs contribute to a structure involved in the transduction of the binding signal rather than to the binding itself. 相似文献
19.
Lentz TL 《Biochemical and biophysical research communications》2000,268(2):480-484
Structural determinants of L-[(3)H]nicotine binding to synthetic peptides comprising residues 188-207 of nicotinic acetylcholine receptor alpha subunits were invesitigated by equilibrium binding analysis. Two binding components were detected, one of low affinity (K(d) approximately 1.5 microM) that did not differ significantly among peptides and another of high affinity. The high affinity binding component was higher for the neuronal peptides (K(d) = 14-23 nM) than the muscle alpha1 peptides (K(d) = 52 nM). The following nonconservative substitutions in the alpha4 peptide resulted in a significant decrease in nicotine affinity for the peptide: Y190A, Y190D, C192G, E195A, E195-, P199A, P199-, and Y203A. Substitution of alpha4P199 with a leucine which is present in the alpha1 sequence decreased the affinity of the alpha4 peptide for nicotine and substitution of alpha1L199 with a proline (alpha4) or a glutamine (alpha3) increased the affinity of the alpha1 peptide. It is concluded that aromatic residues contribute to the binding site for nicotine on the alpha4 subunit and that the residue present at position 199 partly determines differences in nicotine affinity for different alpha subunits. 相似文献
20.
Culetto E Baylis HA Richmond JE Jones AK Fleming JT Squire MD Lewis JA Sattelle DB 《The Journal of biological chemistry》2004,279(41):42476-42483
The anthelmintic drug levamisole causes hypercontraction of body wall muscles and lethality in nematode worms. In the nematode Caenorhabditis elegans, a genetic screen for levamisole resistance has identified 12 genes, three of which (unc-38, unc-29, and lev-1) encode nicotinic acetylcholine receptor (nAChR) subunits. Here we describe the molecular and functional characterization of another levamisole-resistant gene, unc-63, encoding a nAChR alpha subunit with a predicted amino acid sequence most similar to that of UNC-38. Like UNC-38 and UNC-29, UNC-63 is expressed in body wall muscles. In addition, UNC-63 is expressed in vulval muscles and neurons. We also show that LEV-1 is expressed in body wall muscle, thus overlapping the cellular localization of UNC-63, UNC-38, and UNC-29 and suggesting possible association in vivo. This is supported by electrophysiological studies on body wall muscle, which demonstrate that a levamisole-sensitive nAChR present at the C. elegans neuromuscular junction requires both UNC-63 and LEV-1 subunits. Thus, at least four subunits, two alpha types (UNC-38 and UNC-63) and two non-alpha types (UNC-29 and LEV-1), can contribute to levamisole-sensitive muscle nAChRs in nematodes. 相似文献