首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prochiral anthelmintic drug albendazole was administered orally to sheep and rats. Blood samples were taken at standardized intervals during the time course of the plasma kinetics: 18 h in rats and 48 h in sheep. The enantiomeric ratio of the sulfoxide metabolite was determined by means of HPLC on a chiral stationary phase, the chiral selector of which was a N-3,5-dinitrobenzoyl derivative of (S)-tyrosine. Two enantiomers were detected in both animal species but their ratios were inverted in rat vs. sheep. The evolution of the ratio is turned from a racemate at 15 min to 60(-):40(+) at 12 h in rats, while it moved from 23(-):77(+) at 3 h to 4(-):96(+) at 36 h after administration in sheep.  相似文献   

2.
Brewer BN  Zu C  Koscho ME 《Chirality》2005,17(8):456-463
The ability to use mixtures of deprotonated N-(3,5-dinitrobenzoyl)amino acids as chiral selectors for the determination of enantiomeric composition by electrospray ionization-mass spectrometry is demonstrated. For each experiment, two N-(3,5-dinitrobenzoyl)amino acids were chosen such that each would have opposite selectivity for the enantiomers of the analyte. Electrospray ionization-mass spectrometry, monitored in the negative ion mode, of solutions containing the two N-(3,5-dinitrobenzoyl)amino acids, sodium hydroxide, and the analyte, in a one-to-one mixture of methanol and water, afford peaks in the mass spectrum that correspond to the deprotonated 1:1 analyte-selector complexes. The ratio of the intensities of the complexes in the mass spectrum can be related to the enantiomeric composition of the analyte. Additionally, the sense and extent of chiral recognition is consistent with chromatographic observations, using chiral stationary phases derived from N-(3,5-dinitrobenzoyl)amino acids. Each analysis of enantiomeric composition requires less than 10 s to complete, indicating that this method has great potential for the development of fast-/high-throughput chiral analyses.  相似文献   

3.
The synthesis, stereostructure, and enantiomeric separation by chromatography of a new, chiral anxiolytic agent, deramciclane fumarate (2, (-)-[1R,2S,4R]-2-(2-dimethylaminoethoxy)-2-phenyl-1,7, 7-trimethylbicyclo[2.2.1]heptane fumarate, EGIS-3886), is described. The optical antipode and the racemate of compound 2 were also prepared. The structure was determined by single crystal X-ray diffraction analysis. The enantiomeric separation was accomplished by HPLC on Chiralcel OD (250 x 4.6 mm; 10 microm) and hexane-ethanol (99.5:0.5) as mobile phase at room temperature. The enantiomeric purity of the synthesized drug substance proved to be very high (>99. 9%). Some statements published earlier on the stereostructure of deramciclane fumarate are critically discussed.  相似文献   

4.
The N-(n-butylamide) of (S)-2-(phenylcarbamoyloxy)propionic acid, easily prepared starting from the inexpensive L -ethyl lactate, can be used as convenient chiral solvating agent (CSA) to determine the enantiomeric composition of N-(3,5-dinitrobenzoyl)amino acid methyl esters.  相似文献   

5.
Im SH  Ryoo JJ  Lee KP  Choi SH  Jeong YH  Jung YS  Hyun MH 《Chirality》2002,14(4):329-333
Recently, it was reported that the chiral recognition ability of (R)-N-3,5-dinitrobenzoyl phenylglycinol derivative was examined as a new HPLC chiral stationary phase (CSP 1) for the resolution of racemic N-acylnaphthylalkylamines. However, the mechanism of chiral discrimination on the CSP remained elusive until now. In this study, a spectroscopic investigation of the chiral discrimination mechanism of CSP 1 was undertaken using mixtures of (R)-N-3,5-dinitrobenzoyl phenylglycinol-derived chiral selector (2) and each of the enantiomers of N-acylnaphthylalkylamines (3) by NMR study. First, the differences in free energy changes (DeltaDeltaG) upon diastereomeric complexation in solution between the complex of each isomer with chiral selector 2 by NMR titration were calculated. The values were then compared with those estimated by chiral HPLC. The chemical shift changes of each proton on the chiral selector and analytes were also checked and it was found that the chemical shift changes decreased continuously as the acyl group on analytes increased in length. This observation was consistent with the HPLC data. From these experimental results, the interaction mechanism of chiral discrimination between the chiral selector and the analytes is more precisely explained.  相似文献   

6.
Chromatographic applications of three novel chiral stationary phases (CSPs) deriving from (S)-(N)-(3,5-dinitrobenzoyl)tyrosine are reported, under liquid chromatographic (LC) and subscritical fluid chromatographic (SubFC) conditions. Two grafting modes of the chiral moiety have been experimented starting either from γ-mercaptopropyl-silanized (type 1) or γ-aminopropyl-silanized (type 2) silica gels. For type 2 CSPs an evaluation of the stability of the amide linkage was achieved by means of SubFC; the relative contriution of ionic and covalent bindings to the ciral recognitio aility was then outlined. The chromatographic properties of these CSPs were compared with those of the corresponding CSPs deriving from phenylglycine, p-hydroxyphenylglycine, and phenylalanine for the resolution of some tertiary phosphine oxide, naphthoyl amide, and α-methylene γ-lactam enantiomers. Some simple requirements regarding the solute and CSP structures for chiral recognition ability can be inferred from these results. In addition, the resolutio of π-acid α-N-(3,5-dinitrobenzoyl)amino esters was investigated on these π-acid CSPs. An example of preparative scale chromatography is also presented.  相似文献   

7.
The direct enantiomeric separation of a series of beta-blockers has been carried out on two chiral stationary phases (CSPs) derived from 3,5-dinitrobenzoyl tyrosine: the commercially available ChyRoSine-A and a recent improved version of this CSP. Using supercritical fluid chromatography (SFC), facile separations are achieved (1.1 less than Rs less than 7) within short analysis times. The parameters affecting the enantioselectivity (temperature, pressure, mobile phase nature, solute structure) have been investigated. The optimal mobile phase consists in a mixture of carbon dioxide-methanol-propylamine at 25 degrees C. The solute structure has a great influence on the enantioselectivity. For instance, both amine and hydroxyl protons are necessary for chiral discrimination to occur. Furthermore, the steroselectivity value is directly connected to the amine substituent steric bulkiness. Surprisingly, these solutes are poorly resolved using normal phase liquid chromatography (NPLC). Accordingly, the specific influence of carbon dioxide on the enantiomeric separation of 1,2-amino-alcohols have been investigated using various techniques such as nuclear magnetic resonance (NMR) or molecular modelisation. It has been shown that carbon dioxide acts as a complexing agent toward the amino-alcohol by setting up of a bridge with the hydroxyl and the amine protons of the solute. In that way, the resulting complex possesses lower acido-basic properties and a higher conformational rigidity, responsible for chiral discrimination.  相似文献   

8.
Analytical HPLC methods using carbamate chiral stationary phases of polysaccharide derivatives were developed for the enantiomeric resolution of five racemic mixtures of xanthonolignoids: rac-trans-kielcorin C, rac-cis-kielcorin C, rac-trans-kielcorin D, rac-trans-isokielcorin D, and rac-trans-kielcorin E. The separations were evaluated with the stationary phases cellulose tris-3,5-dimethylphenylcarbamate, amylose tris-3,5-dimethylphenylcarbamate, amylose tris-(S)-1-phenylethylcarbamate, and amylose tris-3,5-dimethoxyphenylcarbamate under normal, reversed-phase, and polar organic elution conditions. Chiral recognition of those chiral stationary phases, the influence of mobile phases on the enantiomers separation, and the effects of structural features of the solutes on the chiral discrimination observed are discussed. The best performance was achieved on an amylose tris-3,5-dimethylphenylcarbamate phase. Polar organic conditions gave shorter retention factors and better resolutions and were a valuable alternative to the alcohol-hexane or reversed-phase conditions.  相似文献   

9.
This paper describes a simple, fast, sensitive and reliable method for the simultaneous determination of albendazole sulfoxide (ASOX) and albendazole sulfone (ASON), the two most important metabolites of the drug albendazole (ABZ), in plasma samples using liquid chromatography and tandem mass spectrometry. After liquid-liquid extraction with dichloromethane, the two albendazole metabolites and the internal standard phenacetin were resolved in a CN column using the mobile phase methanol-water (4:6, v/v) acidified with 1% acetic acid. Detection by electrospray mass spectrometry was carried out in the positive ion mode. The method was linear up to 2500 and 250 ng/ml for ASOX and ASON, respectively, with mean recoveries of more than 85%. The precision and accuracy data, based on within- and between-day variations over 5 days, were lower than 15%. The quantitation limits of 0.5 and 5.0 ng/ml for ASON and ASOX are low enough for the method to be suitable for pharmacokinetic studies. Pharmacokinetic data obtained with the proposed method following oral administration of ABZ to a patient with neurocysticercosis are also reported.  相似文献   

10.
Hyun MH  Lee GS  Han SC  Cho YJ  Baik IK 《Chirality》2002,14(6):503-508
A chiral stationary phase (CSP 1) derived from N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkylamide was used for the liquid chromatographic resolution of anilide derivatives of N-acyl-alpha-amino acids and the chromatographic resolution results were compared with those from four other commercial CSPs. The chromatographic resolution results showed that CSP 1 was most effective among five CSPs used in this study. The chiral recognition mechanism exerted by CSP 1 for the resolution of anilide derivatives of N-acyl-alpha-amino acids is proposed to involve a face-to-face pi-pi interaction and two hydrogen bonding interactions between the CSP and the analytes from the chromatographic resolution behaviors of slightly modified anilide derivatives of N-acyl-alpha-amino acids. The chiral recognition mechanism proposed is quite similar to that advanced previously for the resolution of N-(3,5-methoxybenzoyl)-alpha-amino acids on CSP 1, even though the interaction sites of the two types of analytes were totally different from each other. The apparent similarity of the two chiral recognition mechanisms was assumed to stem from the identical interaction modes of the two types of analytes with the CSP. In addition, the dependence of the enantioselectivity of anilide derivatives of N-acyl-alpha-amino acids on the length of the alkyl tail of the N-acyl group of analytes was rationalized to stem from the intercalation of the N-acyl group of the (R)-enantiomer of analytes between the tethers of the CSP.  相似文献   

11.
Cellulose‐tris(3,5‐dimethylphenylcarbamate) was prepared after a reported method and was coated onto an aminopropylated mesopore spherical silica gel. The final product was used as a chiral stationary phase of high performance liquid chromatography for the enantioseparation of a series of glycerin sulfides and glycerin selenides. Mixtures of hexane and 2‐propanol were used as mobile phases. The effects of 2‐propanol concentration in the mobile phase on the retention and resolution were investigated. Some enantiomers of the glycerin monosulfides and monoselenides could be separated satisfactorily, but none of the disulfides could be separated. The structural features of the solutes that influence chiral separation were discussed. Chirality 11:598–601, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
The enantiomeric composition of an enzymatically synthesized sample of the coenzyme A ester of 2-tetradecylglycidic acid (TDGA-CoA) was determined by the use of high-performance liquid chromatography with a chiral stationary phase. The stationary phase was commercially available and consisted of (R)-N-(3,5-dinitrobenzoyl)phenylglycine covalently bonded to aminopropyl silica gel. Analysis was performed using the phenacyl derivative of 2-tetradecylglycidic acid (TDGA), obtained by mild hydrolysis of the TDGA-CoA followed by reaction of the extracted TDGA with phenacyl chloride. Chromatography showed the enantiomeric purity of TDGA-CoA, synthesized in a rat liver microsomal enzyme mixture over a 2-h period, to be a 15.6:1 ratio of the R:S enantiomers (88% ee). The result demonstrates the steroselectivity of the long-chain fatty acid-coenzyme A synthetase for chiral fatty acid epoxide, TDGA.  相似文献   

13.
Huang J  Cao G  Hu X  Sun C  Zhang J 《Chirality》2006,18(8):587-591
(S)-Ornidazole is a subject of research as an antifertility agent in male animals at present. However, there seems to be no relative report on chiral separation for rac-Ornidazole, which has been used as an effective medicine for more than 30 years. In this article, the chiral separation of rac-Ornidazole on a Chiralcel OB-H column based on normal-phase high-performance liquid chromatography (NP-HPLC) is investigated and the methodology for detection of impurity of (R)-Ornidazole in (S)-Ornidazole injection and raw material is established. The novel mobile phase is utilized by mixing n-hexane, methanol and isopropyl alcohol (95:4:1, v/v/v) instead of the typical mobile phase of n-hexane and isopropyl alcohol, although the methanol, which offers a good resolution factor for the enantiomeric separation in this system, is not recommended on the Chiralcel OB-H column according to the instruction supplied by Daicel Chemical Ind., LTD (Japan).  相似文献   

14.
Chiral phase high performance liquid chromatographic resolution of sn-1,2(2,3)- and X-1,3-diacylglycerols generated by partial Grignard degradation from natural triacylglycerols was carried out using a chiral column (25 cm x 4.6 mm i.d.) containing (R)-(+)-1-(1-napthyl)ethylamine polymer chemically bonded to 300A wide pore spherical silica (5 microns particles). The diacylglycerols were chromatographed as 3,5-dinitrophenyl-urethanes and detected at 226 or 254 nm UV. By an isocratic elution with n-hexane- 1,2-dichloroethane-ethanol 40:10:1 (v/v/v) as the mobile phase, the sn-1,2(2,3)-diacylglycerols from corn, linseed, and menhaden oils were resolved into two clearly distinguishable enantiomer groups, although some peak overlappings between the enantiomers were observed in the linseed and menhaden oil diacylglycerols. In addition to the excellent enantiomer resolution, each enantiomer and the X-1,3-isomers were partially resolved into several peaks, which could be tentatively identified on the basis of equivalent carbon number. It is concluded that chiral phase high performance liquid chromatography can be utilized for effective resolution, identification, and quantitation of enantiomeric diacylglycerols from complex natural mixtures.  相似文献   

15.
Two-phase liquid-liquid extraction experiments were undertaken to study the enantioselective transport of the chiral N-protected α-amino acid derivatives from an aqueous buffer solution into an organic phase employing highly lipophilic carbamoylated quinine as chiral selector and phase transfer carrier, respectively. The chiral separation, derived from enantioselective ion-pair formation and differential solubility in the aqueous and organic phases of diastereomeric associates thus formed has been shown to be primarily dependent on the structure of the selectand, the nature of the organic solvent, the molar ratio of a given chiral selector to selectand in the two phases, and the pH of the aqueous phase. Extracted enantiomers were recovered by back-extraction using a relatively polar acidic medium in which the selector is barely insoluble. Thus, the enantiomeric purity of N-(3,5-dinitrobenzoyl)-leucine exceeded 95% enantiomeric excess with 70% overall yield with a single extraction and back-extraction step. Chirality 9:268–273, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The chiral recognition mechanism of amylose CSPs has been described by achieving the enantiomeric resolution of (+/-)-nebivolol on Chiralpak AD and Chiralpak AD-RH columns with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol as mobile phases at different flow rates. The energies of interactions of methanol, ethanol, 1-propanol, 2-propanol and 1-butanol with both phases were calculated. The (+)-RRRS enantiomer eluted first when using methanol, ethanol and 1-propanol, while the elution order was reversed when using 2-propanol and 1-butanol as the mobile phases. It has been concluded that the reversal elution order observed was due in part to the chiral cavities on the amylose CSP which were responsible for the bondings of different magnitude between chiral stationary phase and enantiomers, which are influenced with the type of alcohol used as mobile phase on the conformation of the 3,5-dimethyl phenyl carbamate moiety on the pyranose ring system of the amylose.  相似文献   

17.
Forty different chiral molecules were studied by liquid chromatography with a Pirkle-type, (R)-N-(3,5-dinitrobenzoyl) phenylglycine (DNBPG), chiral stationary phase column. The dramatic effect of a small molecular change on chiral recognition was demonstrated using DL-amino acid derivatives. The inductive effect on chiral recognition was also studied using trifluoro-, trichloro-, dichloro-, monochloroacetyl, and acetyl derivatives of four different chiral amines. The study of the enantiomer separation of 11 different crown ethers of 2,2′-binaphthyldiyl showed that the rigidity of the chiral center can be an additional parameter in chiral recognition for the DNBPG phase but not for a β-cyclodextrin bonded chiral phase. It is apparent from this study that steric effects, inductive effects, and molecular rigidity play important roles in chiral recognition with DNBPG chiral stationary phases.  相似文献   

18.
A direct chiral chromatographic reversed phase method for the determination of the enantiomers of felodipine is described. The influence of charged and uncharged modifiers as well as the effect of the mobile phase pH on the enantiomeric resolution is discussed. A high mobile phase pH and the addition of 2-propanol as organic modifier gave the highest separation factor (α = 1.3). The high mobile phase pH (pH = 7.6) is outside the recommended pH limit of silica based columns but was necessary to achieve baseline resolution of (R)- and (S)-felodipine. Improvement of column efficiency by increasing column temperature was utilized for optimization of the enantiomeric resolution (Rs = 1.7). The enantiomers of felodipine and three related compounds were separated within 15 min. The enantiomeric purity of (R)- and (S)-felodipine in injections and (R)-felodipine in bulk substance was higher than 99.5% and no racemization was observed after storage at accelerated conditions. A poor Chiral-AGP® column used for a long period was restored using a simple wash step together with repacking the top of the chromatographic column. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The effect of structural features of six pairs of enantiomers of cannabimimetic compounds on their chromatographic resolution on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase was studied using various compositions of n-hexane with 2-propanol and ethanol. Structural analysis by molecular mechanics was also performed to verify that the 3D conformation within this family of compounds was preserved with substitution. The homologous enantiomeric pairs showed better resolution when there was an additional OH group near the chiral centers (position 7 on the cannabinoid structure). Better resolution was observed also for the enantiomeric pair that had the smaller alkyl side chain. These differences indicated that the additional OH group contributed to a better discrimination of the enantiomers by the chiral sites of the stationary phase and that the bulkier alkyl side chain reduced it. The chromatographic resolution of two enantiomeric pairs of nonclassical cannabinoids HU-249 and HU-250, HU-255 and HU-256, was compared both in ethanol and 2-propanol. Both enantiomeric pairs showed relatively high resolution and selectivity, but the rigid benzofuran analogs (HU-249 and HU-250) exhibited better resolution using 2-propanol, in spite of the flexibility of the open chain analog (HU-255 and HU-256) and its additional OH group. The elution order of all the cannabinoids was (+)/(?) using both solvents. Unusual solvent effects were displayed by one enantiomeric pair, Δ6-THC, which was resolved easily using 2-propanol, but whose elution order reversed with 1% ethanol in the mobile phase. Partial separation was obtained at 5% ethanol [elution order (+)/(?)] and full separation was obtained at 0.5% ethanol [elution order (?)/(+)]. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Forjan DM  Kontrec D  Vinković V 《Chirality》2006,18(10):857-869
The replacement of the N-H hydrogen of the secondary amide-tethered Pirkle-concept N-(3,5-dinitrobenzoyl)-L-leucine derived chiral stationary phase with various pi-basic or aliphatic groups improved the chiral discrimination ability of new chiral stationary phases, based on the leucine- or alanine-derived chiral selector, for the enantiomers of various racemic neutral analytes with amide functional groups. Retention times decreased while separation and resolution factors increased, thus proving the role of pi-donor aromatic unit as an electron-rich shield in the front of a silica surface. In general, chiral stationary phase (CSP) 5 with the 3,5-dimethylphenyl unit showed best performance, while CSP 3, with phenyl unit, and CSP 7, with 1-naphthyl unit in the tertiary amide connecting tether, were less efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号