首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoxins (LX) areeicosanoids generated via transcellular biosynthetic routes duringinflammation, hypersensitivity reaction, and after angioplasty. LXs aremodulators of leukocyte trafficking and vascular tone. Their influenceon the coagulation cascade has not been determined. In this study, weevaluated the influence of LXs on the expression of tissue factor (TF),a key regulator of coagulation. TF activity was measured in lysates ofmonocytes, human umbilical vein endothelial cells, and ECV304 cellsusing a one-stage clotting assay. LXA4 stimulated TFactivity in each cell type. The influence of LXA4 on TFactivity by ECV304 cells was studied further to explore the mechanismof induction of TF expression. LXA4-induced TF activity wasdose dependent, cycloheximide sensitive, and associated with increasedTF mRNA levels. Induction of TF activity was specific forLXA4 and was not observed with LXB4, the othermajor lipoxin generated by mammalian cells. Furthermore, ECV304 cell TFexpression was not influenced by15(R/S)-methyl-LXA4 or16-phenoxy-LXA4, synthetic analogs of LXA4 thatactivate the myeloid LXA4 receptor, and was not modulatedby SKF-104353, which blocks LXA4 bioactivities transducedthrough the putative shared LXA4/LTD4 receptor.LXA4-stimulated TF expression was blunted by pertussistoxin and by GF-109203X, an inhibitor of protein kinase C, and was notassociated with degradation of IB. Our results establish thatLXA4 induces TF activity via cell signaling pathways withdifferent structural and receptor requirements from those described forinhibition of leukocyte-endothelial cell interactions. They suggest arole for LXA4 as a modulator of TF-related vascular eventsduring inflammation and thrombosis.

  相似文献   

2.
The eicosanoid lipoxin A4(LXA4) is biosynthesized in vivoby cells present at inflammatory sites and appears to be an endogenous anti-inflammatory mediator. Further, in the presence of aspirin, the15-epimer of LXA4(15-epi-LXA4) is biosynthesizedand may mediate some of aspirin's desirable bioactions.LXA4,15-epi-LXA4, and their stableanalogs inhibit inflammation in established animal models, indicatingthat these compounds may be useful for treating inflammatory diseasestates. To investigate the cellular mechanisms by which these lipidmediators downregulate inflammation, we investigated whether theseeicosanoids could influence receptor-mediated degranulation of humanneutrophils, an event thought to play a major causative role in severalinflammatory disease states. LXA4,15-epi-LXA4, and their stableanalogs potently (IC50 < 1 nM)and selectively downregulated neutrophil release of azurophilic granulecontents but did not affect other neutrophil secretory functions. Thus the cellular basis of action of these natural off-switches to inflammation appears to involve downregulation of neutrophilazurophilic granule release.  相似文献   

3.
Eight human G protein-coupled P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) that respond to extracellular nucleotides have been molecularly identified and characterized. P2Y receptors are widely expressed in epithelial cells and play an important role in regulating epithelial cell function. Functional studies assessing the capacity of various nucleotides to promote increases in short-circuit current (Isc) or Ca2+ mobilization have suggested that some subtypes of P2Y receptors are polarized with respect to their functional activity, although these results often have been contradictory. To investigate the polarized expression of the family of P2Y receptors, we determined the localization of the entire P2Y family after expression in Madin-Darby canine kidney (MDCK) type II cells. Confocal microscopy of polarized monolayers revealed that P2Y1, P2Y11, P2Y12, and P2Y14 receptors reside at the basolateral membrane, P2Y2, P2Y4, and P2Y6 receptors are expressed at the apical membrane, and the P2Y13 receptor is unsorted. Biotinylation studies and Isc measurements in response to the appropriate agonists were consistent with the polarized expression observed in confocal microscopy. Expression of the Gq-coupled P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) in lung and colonic epithelial cells (16HBE14o– and Caco-2 cells, respectively) revealed a targeting profile nearly identical to that observed in MDCK cells, suggesting that polarized targeting of these P2Y receptor subtypes is not a function of the type of epithelial cell in which they are expressed. These experiments highlight the highly polarized expression of P2Y receptors in epithelial cells. Madin-Darby canine kidney; 16HBE14o–; Caco-2; confocal microscopy; polarized targeting  相似文献   

4.
Flagellin, the structural component of bacterial flagella, is secreted by pathogenic and commensal bacteria. Flagellin activates proinflammatory gene expression in intestinal epithelia. However, only flagellin that contacts basolateral epithelial surfaces is proinflammatory; apical flagellin has no effect. Pathogenic Salmonella, but not commensal Escherichia coli, translocate flagellin across epithelia, thus activating epithelial proinflammatory gene expression. Investigating how epithelia detect flagellin revealed that cell surface expression of Toll-like receptor 5 (TLR5) conferred NF-kappaB gene expression in response to flagellin. The response depended on both extracellular leucine-rich repeats and intracellular Toll/IL-1R homology region of TLR5 as well as the adaptor protein MyD88. Furthermore, immunolocalization and cell surface-selective biotinylation revealed that TLR5 is expressed exclusively on the basolateral surface of intestinal epithelia, thus providing a molecular basis for the polarity of this innate immune response. Thus, detection of flagellin by basolateral TLR5 mediates epithelial-driven inflammatory responses to Salmonella.  相似文献   

5.
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3. epithelial cells; protein sorting; Madin-Darby canine kidney cells; basolateral  相似文献   

6.
We have characterized the muscarinic AChreceptors (mAChRs) expressed in Madin- Darby canine kidney (MDCK)strain II epithelial cells. Binding studies with themembrane-impermeable antagonist N-[3H]methylscopolaminedemonstrated that mAChRs are ~2.5 times more abundant on thebasolateral than on the apical surface. Apical, but not basolateral,mAChRs inhibited forskolin-stimulated adenylyl cyclase activity inresponse to the agonist carbachol. Neither apical nor basolateralmAChRs exhibited detectable carbachol-stimulated phospholipase Cactivity. Carbachol application to the apical or the basolateralmembrane resulted in a threefold increase in intracellularCa2+ concentration, which wascompletely inhibited by pertussis toxin on the apical side andpartially inhibited on the basolateral side. RT-PCR analysis showedthat MDCK cells express the M4 and M5 receptor mRNAs. These datasuggest that M4 receptors reside on the apical and basolateral membranes of polarized MDCK strain IIcells and that the M5 receptor mayreside in the basolateral membrane of a subset of cells.

  相似文献   

7.
The human electrogenic renal Na-HCO3 cotransporter (NBCe1-A; SLC4A4) is localized to the basolateral membrane of proximal tubule cells. Mutations in the SLC4A4 gene cause an autosomal recessive proximal renal tubular acidosis (pRTA), a disease characterized by impaired ability of the proximal tubule to reabsorb HCO3 from the glomerular filtrate. Other symptoms can include mental retardation and ocular abnormalities. Recently, a novel homozygous missense mutant (R881C) of NBCe1-A was reported from a patient with a severe pRTA phenotype. The mutant protein was described as having a lower than normal activity when expressed in Xenopus oocytes, despite having normal Na+ affinity. However, without trafficking data, it is impossible to determine the molecular basis for the phenotype. In the present study, we expressed wild-type NBCe1-A (WT) and mutant NBCe1-A (R881C), tagged at the COOH terminus with enhanced green fluorescent protein (EGFP). This approach permitted semiquantification of surface expression in individual Xenopus oocytes before assay by two-electrode voltage clamp or measurements of intracellular pH. These data show that the mutation reduces the surface expression rather than the activity of the individual protein molecules. Confocal microscopy on polarized mammalian epithelial kidney cells [Madin-Darby canine kidney (MDCK)I] expressing nontagged WT or R881C demonstrates that WT is expressed at the basolateral membrane of these cells, whereas R881C is retained in the endoplasmic reticulum. In summary, the pathophysiology of pRTA caused by the R881C mutation is likely due to a deficit of NBCe1-A at the proximal tubule basolateral membrane, rather than a defect in the transport activity of individual molecules. bicarbonate; intracellular pH; acidbase; SLC4A4; Na+-HCO3 cotransporter 1  相似文献   

8.
It is not knownif, in polarized cells, desensitization events can be influenced by thedomain on which the receptor resides. Desensitization was induced by5'-(N-ethylcarboxamido)adenosine (NECA) and wasquantitated by measurement of short-circuit current (Isc) in response to adenosine. NECA addedto either the apical or basolateral compartments rapidly desensitizedreceptors on these respective domains. Although apical NECA had noeffect on the basolateral receptor stimulation, basolateral NECAinduced a complete desensitization of the apical receptor. Wehypothesized that desensitization of apical receptor by basolateraldesensitization could relate to a trafficking step in which A2breceptor is first targeted basolaterally upon synthesis and transportedto the apical surface via vesicular transport/microtubules. Becausedesensitization is associated with downregulation of receptors, apicaladenosine receptor can thus be affected by basolateral desensitization. Both low temperature and nocodazole inhibited Iscinduced by apical and not basolateral adenosine. In conclusion:1) a single receptor subtype, here modeled by the A2b receptor,differentially desensitizes based on the membrane domain on which it isexpressed, 2) agonist exposure on one domain can result indesensitization of receptors on the opposite domain, 3)cross-domain desensitization can display strict polarity, and4) receptor trafficking may play a role in thecross-desensitization process.

  相似文献   

9.
Lipoxins (LX) and aspirin-triggered LX (ATL) are eicosanoids generated during inflammation via transcellular biosynthetic routes that elicit distinct anti-inflammatory and proresolution bioactions, including inhibition of leukocyte-mediated injury, stimulation of macrophage clearance of apoptotic neutrophils, repression of proinflammatory cytokine production, and inhibition of cell proliferation and migration. Recently, it was reported that aspirin induces heme oxygenase-1 (HO-1) expression on endothelial cells (EC) in a COX-independent manner, what confers protection against prooxidant insults. However, the underlying mechanisms remain unclear. In this study, we investigated whether an aspirin-triggered lipoxin A4 stable analog, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 (ATL-1) was able to induce endothelial HO-1. Western blot analysis showed that ATL-1 increased HO-1 protein expression associated with increased mRNA levels on EC in a time- and concentration-dependent fashion. This phenomenon appears to be mediated by the activation of the G protein-coupled LXA4 receptor because pertussis toxin and Boc-2, a receptor antagonist, significantly inhibited ATL-1-induced HO-1 expression. We demonstrate that treatment of EC with ATL-1 inhibited VCAM and E-selectin expression induced by TNF- or IL-1. This inhibitory effect of the analog is modulated by HO-1 because it was blocked by SnPPIX, a competitive inhibitor that blocks HO-1 activity. Our results establish that ATL-1 induces HO-1 in human EC, revealing an undescribed mechanism for the anti-inflammatory activity of these lipid mediators. signaling transduction; resolution of inflammation  相似文献   

10.
Human colon epithelial cells express the G protein-coupled receptor CCR6, the sole receptor for the chemokine CCL20 (also termed MIP-3). CCL20 produced by intestinal epithelial cells is upregulated in response to proinflammatory stimuli and microbial infection, and it chemoattracts leukocytes, including CCR6-expressing immature myeloid dendritic cells, into sites of inflammation. The aim of this study was to determine whether CCR6 expressed by intestinal epithelial cells acts as a functional receptor for CCL20 and whether stimulation with CCL20 alters intestinal epithelial cell functions. The human colon epithelial cell lines T84, Caco-2, HT-29, and HCA-7 were used to model colonic epithelium. Polarized intestinal epithelial cells constitutively expressed CCR6, predominantly on the apical side. Consistent with this, apical stimulation of polarized intestinal epithelial cells resulted in tyrosine phosphorylation of the p130 Crk-associated substrate (Cas), an adaptor/scaffolding protein that localizes in focal adhesions and has a role in regulating cytoskeletal elements important for cell attachment and migration. In addition, CCL20 stimulation inhibited agonist-stimulated production of the second messenger cAMP and cAMP-mediated chloride secretory responses by intestinal epithelial cells. Inhibition was abrogated by pertussis toxin, consistent with signaling through Gi proteins that negatively regulate adenylyl cyclases and cAMP production. These data indicate that signaling events, occurring via the activation of the apically expressed chemokine receptor CCR6 on polarized intestinal epithelial cells, alter specialized intestinal epithelial cell functions, including electrogenic ion secretion and possibly epithelial cell adhesion and migration. CCL20; macrophage inflammatory protein-3; forskolin; G protein-coupled receptors; tyrosine phosphorylation  相似文献   

11.
Studies have shown that lipoxin A4 (LXA4) and activation of LXA4 receptor provided protection against myocardial ischemia/reperfusion injury in animal models. However, the mechanisms by which LXA4 induced protective role on myocardial ischemia/reperfusion injury remains unclear. In the present studies, we investigated the protective effects of LXA4 on H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) injury and involvement of heme oxygenase-1 (HO-1)- and K+ channel-dependant pathways in the LXA4 action. H9c2 cardiomyocytes were pretreated with or without LXA4 or HO-1 specific interfering RNA (siRNA) or various blockers and openers of K+ channels before exposing to H/R injury. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in cellular supernatants and necrosis factor-α (TNF-α) in cellular lysates were measured by using ELISA. Expressions of HO-1 mRNA and protein were analyzed by using RT-PCR and Western blot respectively. Pretreatment of the cells undergoing H/R injury with LXA4 significantly reduced the LDH and CK levels induced by H/R injury, and increased the expressions and activity of HO-1. However, the protective effects of LXA4 were completely blocked by transfection of the cells with HO-1 siRNA, and were partially but significantly blocked by pretreatment of the cells with various blockers of K+ channels. The LXA4-induced expressions of HO-1 in the cells were also inhibited by HO-1 siRNA and various blockers of K+ channels. The inhibitory effects of LXA4 on enhanced TNF-α levels induced by H/R injury were abolished by transfection of the cells with HO-1 siRNA. In conclusion, the protective role of LXA4 on cardiomyocytes against H/R injury is related to upregulation of HO-1 via reduced production of TNF-α and activation of ATP-sensitive K+ channels and calcium-sensitive K+ channel.  相似文献   

12.
CASK is the mammalian ortholog of LIN2, a component of the LIN2/7/10 protein complex that targets epidermal growth factor receptor (EGFR) to basolateral membranes in Caenorhabditis elegans. A member of the MAGUK family of scaffolding proteins, CASK resides at basolateral membranes in polarized epithelia. Its interaction with LIN7 is evolutionarily conserved. In addition, CASK forms a complex with another MAGUK, the DLG1 tumor suppressor. Although complete knockout of CASK is lethal, the gene is X-linked, enabling us to generate heterozygous female adults that are mosaic for its expression. We also generated intestine-specific CASK knockout mice. Immunofluorescence analysis revealed that in intestine, CASK is not required for epithelial polarity or differentiation but is necessary for the basolateral localization of DLG1 and LIN7C. However, the subcellular distributions of DLG1 and LIN7C are independent of CASK in the stomach. Moreover, CASK and LIN7C show normal localization in dlg1−/− intestine. Despite the disappearance of basolateral LIN7C in CASK-deficient intestinal crypts, this epithelium retains normal localization of LIN7A/B, EGFR and ErbB-2. Finally, crypt-to-villus migration rates are unchanged in CASK-deficient intestinal epithelium. Thus, CASK expression and the appropriate localization of DLG1 are not essential for either epithelial polarity or intestinal homeostasis in vivo.  相似文献   

13.
Scatter Factor, also known as Hepatocyte Growth Factor (SF/HGF), has pleiotropic functions including direct control of cell-cell and cell- substrate adhesion in epithelia. The subcellular localization of the SF/HGF receptor is controversial. In this work, the cell surface distribution of the SF/HGF receptor was studied in vivo in epithelial tissues and in vitro in polarized MDCK monolayers. A panel of monoclonal antibodies against the beta chain of the SF/HGF receptor stained the basolateral but not the apical surface of epithelia lining the lumen of human organs. Radiolabeled or fluorescent-tagged anti- receptor antibodies selectively bound the basolateral cell surface of MDCK cells, which form a polarized monolayer sealed by intercellular junctions, when grown on polycarbonate filters in a two-chamber culture system. The receptor was concentrated around the cell-cell contact zone, showing a distribution pattern overlapping with that of the cell adhesion molecule E-cadherin. The basolateral localization of the SF/HGF receptor was confirmed by immunoprecipitation after domain selective cell surface biotinylation. When cells were fully polarized the SF/HGF receptor became resistant to non-ionic detergents, indicating interaction with insoluble component(s). In pulse-chase labeling and surface biotinylation experiments, the newly synthesized receptor was found exclusively at the basolateral surface. We conclude that the SF/HGF receptor is selectively exposed at the basolateral plasma membrane domain of polarized epithelial cells and is targeted after synthesis to that surface by direct delivery from the trans-Golgi network.  相似文献   

14.
Transcellular Mg2+ transport across epithelia, involving both apical entry and basolateral extrusion, is essential for magnesium homeostasis, but molecules involved in basolateral extrusion have not yet been identified. Here, we show that CNNM4 is the basolaterally located Mg2+ extrusion molecule. CNNM4 is strongly expressed in intestinal epithelia and localizes to their basolateral membrane. CNNM4-knockout mice showed hypomagnesemia due to the intestinal malabsorption of magnesium, suggesting its role in Mg2+ extrusion to the inner parts of body. Imaging analyses revealed that CNNM4 can extrude Mg2+ by exchanging intracellular Mg2+ with extracellular Na+. Furthermore, CNNM4 mutations cause Jalili syndrome, characterized by recessive amelogenesis imperfecta with cone-rod dystrophy. CNNM4-knockout mice showed defective amelogenesis, and CNNM4 again localizes to the basolateral membrane of ameloblasts, the enamel-forming epithelial cells. Missense point mutations associated with the disease abolish the Mg2+ extrusion activity. These results demonstrate the crucial importance of Mg2+ extrusion by CNNM4 in organismal and topical regulation of magnesium.  相似文献   

15.
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.  相似文献   

16.
Airway epithelia are positioned at the interface between the body and the environment, and generate complex signaling responses to inhaled toxins and other stresses. Luminal mechanical stimulation of airway epithelial cells produces a propagating wave of elevated intracellular Ca(2+) that coordinates components of the integrated epithelial stress response. In polarized airway epithelia, this response has been attributed to IP(3) permeation through gap junctions. Using a combination of approaches, including enzymes that destroy extracellular nucleotides, purinergic receptor desensitization, and airway cells deficient in purinoceptors, we demonstrated that Ca(2+) waves induced by luminal mechanical stimulation in polarized airway epithelia were initiated by the release of the 5' nucleotides, ATP and UTP, across both apical and basolateral membranes. The nucleotides released into the extracellular compartment interacted with purinoceptors at both membranes to trigger Ca(2+) mobilization. Physiologically, apical membrane nucleotide-release coordinates airway mucociliary clearance responses (mucin and salt, water secretion, increased ciliary beat frequency), whereas basolateral release constitutes a paracrine mechanism by which mechanical stresses signal adjacent cells not only within the epithelium, but other cell types (nerves, inflammatory cells) in the submucosa. Nucleotide-release ipsilateral and contralateral to the surface stimulated constitutes a unique mechanism by which epithelia coordinate local and distant airway defense responses to mechanical stimuli.  相似文献   

17.
As sentinels of host defense, intestinal epithelial cells respond to the viral pathogen rotavirus by activating a gene expression that promotes immune cell recruitment and activation. We hypothesized that epithelial sensing of rotavirus might target dsRNA, which can be detected by TLR3 or protein kinase R (PKR). Accordingly, we observed that synthetic dsRNA, polyinosinic acid:cytidylic acid (poly(I:C)), potently induced gene remodeling in model intestinal epithelia with the specific pattern of expressed genes, including both classic proinflammatory genes (e.g., IL-8), as well as genes that are classically activated in virus-infected cells (e.g., IFN-responsive genes). Poly(I:C)-induced IL-8 was concentration dependent (2-100 mug/ml) and displayed slower kinetics compared with IL-8 induced by bacterial flagellin (ET(50) approximately 24 vs 8 h poly(I:C) vs flagellin, respectively). Although model epithelia expressed detectable TLR3 mRNA, neither TLR3-neutralizing Abs nor chloroquine, which blocks activation of intracellular TLR3, attenuated epithelial responses to poly(I:C). Conversely, poly(I:C)-induced phosphorylation of PKR and inhibitors of PKR, 2-aminopurine and adenine, ablated poly(I:C)-induced gene expression but had no effect on gene expression induced by flagellin, thus suggesting that intestinal epithelial cell detection of dsRNA relies on PKR. Consistent with poly(I:C) detection by an intracellular molecule such as PKR, we observed that both uptake of and responses to poly(I:C) were polarized to the basolateral side. Lastly, we observed that the pattern of pharmacologic inhibition of responses to poly(I:C) was identical to that seen in response to infection by live rotavirus, indicating a potentially important role for PKR in activating intestinal epithelial gene expression in rotavirus infection.  相似文献   

18.
As we have shown previously, release of measles virus (MV) from polarized epithelial cells is not determined by the viral envelope proteins H and F. Although virus budding is restricted to the apical surfaces, both proteins were abundantly expressed on the basolateral surface of Madin-Darby canine kidney cells. In this report, we provide evidence that the basolateral expression of the viral proteins is of biological importance for the MV infection of polarized epithelial cells. We demonstrate that both MV glycoproteins possess a basolateral targeting signal that is dependent upon the unique tyrosine in the cytoplasmic tails. These tyrosines are shown to be also part of an endocytosis signal. In MV-infected cells, internalization of the glycoproteins was not observed, indicating that recognition of the endocytosis signals is disturbed by viral factors. In contrast, basolateral transport was not substantially hindered, resulting in efficient cell-to-cell fusion of polarized Madin-Darby canine kidney cells. Thus, recognition of the signals for endocytosis and polarized transport is differently regulated in infected cells. Mutation of the basolateral sorting signal in one of the MV glycoproteins prevented fusion of polarized cells. These results suggest that basolateral expression of the MV glycoproteins favors virus spread in epithelia.  相似文献   

19.
20.
Intestinal epithelial CD98: an oligomeric and multifunctional protein   总被引:1,自引:0,他引:1  
The intestinal epithelial cell-surface molecule, CD98 is a type II membrane glycoprotein. Molecular orientation studies have demonstrated that the C-terminal tail of human CD98 (hCD98), which contains a PDZ-binding domain, is extracellular. In intestinal epithelial cells, CD98 is covalently linked to an amino-acid transporter with which it forms a heterodimer. This heterodimer associates with beta(1)-integrin and intercellular adhesion molecular 1 (ICAM-1) to form a macromolecular complex in the basolateral membranes of polarized intestinal epithelial cells. This review focuses on the multifunctional roles of CD98, including involvement in extracellular signaling, adhesion/polarity, and amino-acid transporter expression in intestinal epithelia. A role for CD98 in intestinal inflammation, such as Intestinal Bowel Disease (IBD), is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号