首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intersubunit transfer of fatty acyl groups during fatty acid reduction   总被引:2,自引:0,他引:2  
Fatty acid reduction in Photobacterium phosphoreum is catalyzed in a coupled reaction by two enzymes: acyl-protein synthetase, which activates fatty acids (+ATP), and a reductase, which reduces activated fatty acids (+NADPH) to aldehyde. Although the synthetase and reductase can be acylated with fatty acid (+ATP) and acyl-CoA, respectively, evidence for acyl transfer between these proteins has not yet been obtained. Experimental conditions have now been developed to increase significantly (5-30-fold) the level of protein acylation so that 0.4-0.8 mol of fatty acyl groups are incorporated per mole of the synthetase or reductase subunit. The acylated reductase polypeptide migrated faster on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the unlabeled polypeptide, with a direct 1 to 1 correspondence between the moles of acyl group incorporated and the moles of polypeptide migrating at this new position. The presence of 2-mercaptoethanol or NADPH, but not NADP, substantially decreased labeling of the reductase enzyme, and kinetic studies demonstrated that the rate of covalent incorporation of the acyl group was 3-5 times slower than its subsequent reduction with NADPH to aldehyde. When mixtures of the synthetase and reductase polypeptides were incubated with [3H] tetradecanoic acid (+ATP) or [3H]tetradecanoyl-CoA, both polypeptides were acylated to high levels, with the labeling again being decreased by 2-mercaptoethanol or NADPH. These results have demonstrated that acylation of the reductase represents an intermediate and rate-limiting step in fatty acid reduction. Moreover, the activated acyl groups are transferred in a reversible reaction between the synthetase and reductase proteins in the enzyme mechanism.  相似文献   

2.
A fluorescent thiol reagent, N-(7-dimethylamino-4-methylcoumarinyl) maleimide, was used to label the acyl carrier site of the bacterial fatty acid synthetase from Brevibacterium ammoniagenes. The reagent bound preferentially to the 4'-phosphopantetheine thiol group of the acyl carrier domain and irreversively inactivated the enzyme. The modified enzyme was cleaved by proteinases for the mapping of the labeled site. The fluorescent fragment was readily detected on a polyacrylamide gel after electrophoresis. The region of 45 kDa containing the 4'-phosphopantetheine was located on the polypeptide at around two-thirds of the full length from the N-terminal.  相似文献   

3.
Two rat liver fatty acid synthetase preparations, containing 1.6 and 2.0 mol of 4'-phosphopantetheine/mol of synthetase, showed specific activity of 2006 and 2140 nmol of NADPH oxidized/min per mg of protein respectively. The two synthetase preparations could be loaded with either 3.3-4.4 mol of [1-14] acetate or 2.9-3.7 mol of [2-14C]malonate, by incubation with either [1-14C] acetyl-CoA or [2-14C]malonyl-CoA. The 4'-phosphopantetheine site could be more than 90% saturated and the serine site about 80% saturated with malonate derived from malonyl-CoA. However, with acetyl-CoA as substrate, binding at both the 4'-phosphopantetheine and cysteine thiol sites did not reach saturation. We interpret these results to indicate that, whereas the equilibrium constant for transfer of substrates between the serine loading site and the 4'-phosphopantetheine site is close to unity, that for transfer of acetyl moieties between the 4'-phosphopantetheine and cysteine sites favours formation of the 4'-phosphopantetheine thioester. Thus, despite the apparent sub-stoichiometric binding of acetate, the results are consistent with a functionally symmetrical model for the fatty acid synthetase which permits simultaneous substrate binding at two separate active centres.  相似文献   

4.
Mammalian fatty acid synthetase carrying a 3-keto, 3-hydroxy, or 2-enoyl acyl-enzyme intermediate on the 4'-phosphopantetheine thiol is reversibly inhibited by binding of NADP to the enoyl reductase domain. Acyl moieties which can normally leave the enzyme by thioester hydrolysis or by transfer to a CoA acceptor cannot readily be removed from the NADP-inhibited enzyme; in addition, 3-keto or 2-enoyl moieties attached to the enzyme 4'-phosphopantetheine cannot readily be reduced when NADP is replaced by NADPH, even though model substrates can be reduced immediately. Reactivation of the NADP-inhibited 3-ketoacyl-enzyme, by exposure to NADPH, is paralleled by reduction and dehydration of the 3-ketoacyl moiety to a saturated acyl moiety without accumulation of either the 3-hydroxy or 2-enoyl acyl-enzyme intermediates, indicating that once the 4'-phosphopantetheine engages the ketoacyl moiety in the ketoreductase domain, subsequent reactions occur very rapidly. The results are consistent with a hypothesis which proposes that NADP binding to the enoyl reductase domain of fatty acid synthetase carrying an acyl intermediate other than a saturated moiety induces a conformational change in the enzyme that results in decreased mobility of the 4'-phosphopantetheine prosthetic group. Normal mobility of the prosthetic group, essential for transfer of acyl-enzyme intermediates through the active sites of the various functional domains, is restored relatively slowly when NADP is replaced by NADPH. It remains to be determined whether this modulation by pyridine nucleotides observed in vitro plays a role in the regulation of fatty acid synthetase activity in vivo.  相似文献   

5.
Stearic acid coupled covalently to Sepharose 6B serves as substrate for thioesterification catalyzed by rat liver long-chain fatty acyl-CoA synthetase (ATP-forming) (EC 6.2.1.3). Availability as substrate is dependent upon the conservation of the free omega-terminal in addition to that of the free carboxyl function. The enzymatic overall formation of matrix-acyl-CoA in the presence of ATP and CoA as cosubstrates conforms to the stoichiometry reported for thioesterification of the free long-chain fatty acyl substrate. The preformed matrix-acyl-CoA serves as substrate for the backward synthetase reaction in the presence of AMP and PPi. The apparent Km values for ATP and CoA in the presence of the acyl matrix are similar to the respective Km values observed in the presence of the free acid substrate. The apparent Km for the acyl matrix is 10-fold higher (0.5 mM) than the apparent Km value for the free acid. The feasibility of enzymatic thioesterification of bound long-chain fatty acids implies that the exact nature of the bulky chain situated between the carboxy and omega-terminal plays a secondary role in defining the fatty acyl substrate specificity for long-chain fatty acyl-CoA synthetase. Also, dissociation of bound long-chain fatty acids does not constitute an obligatory preliminary step to fatty acid thioesterification.  相似文献   

6.
A procedure is described for the purification of the fatty acid synthetase complex (FAS) from Neurospora crassa. The enzyme complex has a molecular weight of 2.3 times 10(6), contains 6 mol of 4'-phosphopantetheine per mol, and on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gives a single band, or a closely spaced doublet, which comigrates with standard myosin (molecular weight, 2 times 10(5)). Since the slightly retarded component in the doublet accounts for all protein-bound 4'-phosphopantetheine, the complex appears to be made up of 11 to 12 equally sized subunits, 6 of which carry the acyl carrier protein function. In this unusual arrangement, notably the lack of the low-molecular-weight acyl carrier protein component seen in other FAS systems, as well as in its enzymatic properties, the Neurospora FAS complex is quite similar to the yeast enzyme. The FAS complex of a saturated fatty acid-requiring mutant, previously disignated cel-, contains less than 2% of the 4'-phosphopantetheine prosthetic groups found in the wild-type complex. The leaky phenotype of this mutant, here designated fas-, is accounted for by a residual fatty acid synthesizing activity in its FAS complex, which is several-fold higher than expected from its residual content of 4'-phosphopanthetheine.  相似文献   

7.
Limited digestion, with trypsin, of the fatty acid synthetase from rat mammary gland releases an enzymically active thioesterase component that, under denaturing conditions, consists of two major species of mol.wts. 35000 and 17500 and a minor species, mol.wt. 15,000. The 17500- and 150000-mol.wt. species are shown to originate from the 35000-mol.wt. species as a result of nicking by trypsin. The nicked polypeptides are enzymically active. The fatty acid synthetase is inhibited by [1,3-14C]di-isopropyl phosphorofluoridate, which is shown to bind to, and inactivate, two thioesterase active sites. When the [1,3-14C]di-isopropyl phosphate-labelled fatty acid synthetase is subjected to limited digestion with trypsin, all of the radioactivity is recovered in the isolated thioesterase component, i.e. in the 35000-mol.wt. polypeptide and its nicked products. Since the isolated thioesterase is shown to bind only one di-isopropyl phosphate residue per 35000-mol.wt. polypeptide, we conclude that the fatty acid synthetase has two thioesterase domains, both of which are removed by limited trypsin treatment.  相似文献   

8.
The presence of protein-bound pantothenate in Neurospora crassa was investigated by labelling a pantothenate auxotroph (pan-2) with [14C]pantothenate and examining mycelial homogenates on dodecyl sulfate/polyacrylamide gels. Five peaks of radioactivity were found, with apparent molecular masses of 200, 140, 22, 19, and 9 kDa. The 200-kDa peak was identified as fatty acid synthetase, based on its absence in a fatty acid synthetase mutant. The 22-kDa and 19-kDa peaks co-purified with mitochondrial markers on sucrose gradients. When purified mitochondria were fractionated, the 19-kDa protein was associated with the inner membrane and the 22-kDa protein was enriched in the soluble mitochondrial fraction. The label was quantitatively recovered from the mitochondrial proteins as 4'-phosphopantetheine after mild alkaline hydrolysis. Although the function of this post-translational modification of mitochondrial proteins is not known, several possibilities are discussed: the 4'-phosphopantetheine may act as a carrier group in an enzymatic reaction, or it may perform a regulatory function as part of an enzyme complex.  相似文献   

9.
Our model of the animal fatty acid synthetase describes a head-to-tail arrangement of two identical subunits and predicts the presence of two centers for fatty acid synthesis. Current experiments which support this conclusion were conducted using the following approach. The thioesterase component of chicken liver fatty acid synthetase was either inhibited using phenylmethanesulfonyl fluoride or diisopropyl fluorophosphate, or released from the synthetase by limited proteolysis with alpha-chymotrypsin, thus ensuring that the fatty acyl products remain bound to the enzyme. Employing such preparations, the amount of NADPH oxidized in the initial burst of fatty acid synthesis was determined by stopped flow techniques. Gas-liquid chromatography showed that C20:0 and C22:0 constituted 85% of the fatty acids formed de novo, a result that was confirmed using [14C]acetyl-CoA in the reaction. These data showed that 1.0 mol of fatty acyl-enzyme product was formed per mol of phosphopantetheine; in addition, the measured stoichiometry of NADPH oxidation was sufficient to account for de novo fatty acid synthesis. Altogether, these results indicate that the two sites for fatty acid synthesis are active and function simultaneously. They also indicate that the thioesterase plays a key role in determining the chain specificity of fatty acid synthesis.  相似文献   

10.
The 4'-phosphopantetheine hydrolase of rat liver, partially purified by ammonium sulfate precipitation, catalyzes the hydrolysis of the prosthetic group 4'-phosphopantetheine from the holo-fatty acid synthetase. The two products of the action of this enzyme, 4'-phosphopantetheine and apo-fatty acid synthetase, were isolated by DEAE-cellulose chromatography and by chromatography on a Sepharose epsilon-aminocaproyl pantetheine column, respectively. The resultant apo-fatty acid synthetase was quantitated by immunoprecipitation and it was also converted to the holoprotein with a crude preparation of rat liver 4'-phosphopantetheine transferase. Quantitative determination of the hydrolase reaction product, 4'-phosphopantetheine, by amino acid analysis and microbiological assays confirmed the presence of 1 mol of this compound/mol of holo-fatty acid synthetase.  相似文献   

11.
The interaction between rat mammary gland thioesterase II and fatty acid synthetase has been studied by a variety of physicochemical techniques. Pyrene-labeled thioesterase II does not exhibit increased fluorescence anisotropy when mixed with fatty acid synthetase, suggesting that the enzymes do not readily form a complex. Nevertheless, the functional interaction between the enzymes can be easily demonstrated by observing the hydrolysis, by unmodified thioesterase II, of acyl chains from their thioester linkage to the 4-phosphopantetheine of the fatty acid synthetase. This hydrolytic reaction is not inhibited even in the presence of a large excess of fatty acid synthetase with vacant 4'-phosphopantetheine thiols, indicating that interaction occurs only between thioesterase and fatty acid synthetase species which carry acyl chains on the 4'-phosphopantetheine thiols. A novel model system was devised which allowed us to explore the nature of the physical interaction between the two enzymes under conditions where the synthetase was actively engaged in acyl chain assembly. Fatty acid synthetase was treated with phenylmethanesulfonyl fluoride to inhibit its resident thioesterase activity, immobilized via a specific antibody to a column of Sepharose 4B, and exposed to the substrates required for acyl-enzyme assembly. When thioesterase II was introduced to the column, it passed through unretarded even though it efficiently catalyzed hydrolysis of the immobilized S-acyl synthetase en route. These results indicate that the two enzymes associate when an acyl chain is present on the synthetase and that they dissociate rapidly following completion of the catalytic process. Thus, the mammary system differs from that of the avian uropygial gland in which the two enzymes associate to form a stable complex even in the absence of substrates.  相似文献   

12.
Vibrio harveyi extracts contain three polypeptides (32, 42, and 57 kDa) which are involved in long-chain aldehyde biosynthesis and can be labeled with [3H] tetradecanoic acid (+ATP) and/or [3H]tetradecanoyl-CoA. These proteins have been separated from other labeled bands by ammonium sulfate fractionation, and the 32-kDa polypeptide has been further purified to homogeneity by ion-exchange, gel filtration, and hydroxylapatite chromatography. In aqueous buffers at pH 7, the 32-kDa protein catalyzes the hydrolysis of tetradecanoyl-CoA at a low rate (0.01 mumol/min/mg) to form free fatty acids. The thioesterase rate is slightly increased by phosphate, which also protects the enzyme against inhibition by the sulfhydryl reagent N-ethylmaleimide. Acyl-CoA cleavage is dramatically stimulated (up to 100-fold) by certain organic solvents, in particular glycerol and ethylene glycol, with the fatty acyl group being transferred to the alcohol acceptors. These enzymatic properties may be related to the role of the 32-kDa esterase in generating fatty acids for subsequent use in the V. harveyi bioluminescent system.  相似文献   

13.
The fatty acid synthetase of animal tissue consists of two subunits, each containing seven catalytic centers and an acyl carrier site. Proteolytic cleavage patterns indicate that the subunit is arranged into three major domains, I, II, and III. Domain I contains the NH2-terminal end of the polypeptide and the catalytic sites of beta-ketoacyl synthetase (condensing enzyme) and the acetyl-and malonyl-transacylases. This domain, therefore, functions as a site for acetyl and malonyl substrate entry into the process of fatty acid synthesis and acts in part as the site of carbon-carbon condensation, resulting in chain elongation. Domain II is the medial domain and contains the beta-ketoacyl and enoyl reductases, probably the dehydratase, and the 4'-phosphopantetheine prosthetic group of the acyl carrier protein site. Domain II, therefore, is designated as the reduction domain where the keto carbon is reduced to methylene carbon by sequential processes of reduction, dehydration, and reduction again. Throughout these processes, the acyl group is attached to the pantetheine-SH of the acyl carrier protein. The latter site is distal to the cysteine-SH of the beta-ketoacyl synthetase, constitutes the 15000-dalton polypeptide at the COOH-terminal end of Domain II, and connects to Domain III. When the growing chain reaches C16 carbon length, the fatty acyl group is released by the thioesterase activity, which is contained in Domain III. A functional model is proposed based on the aforementioned results and the recent evidence that the synthetase subunits are arranged in a head-to-tail fashion, such that the pantetheine-SH of the acyl carrier protein of one subunit and the cysteine-SH of the beta-ketoacyl synthetase of the second subunit are juxtaposed. In this model, a palmitate synthesizing site contains Domain I of one subunit and Domains II and III of the second subunit. Therefore, even though each subunit contains all of the partial activities of the reaction sequence, the actual palmitate synthesizing unit consists of one-half of a subunit interacting with the complementary half of the other subunit.  相似文献   

14.
Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology.  相似文献   

15.
The finding that animal synthetases are complexes consisting of two polypeptide chains (Stoops, J.K., Arslanian, M.J., Oh, Y.H., Vanaman, T.C., and Wakil, S.J. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 1940-1944) led us to investigate their 4'-phosphopantetheine content. We have found that the chicken and rat synthetases contain 1.6 to 2.2 mol of 4'-phosphopantetheine per mol of the complex. The implications of this finding concerning the structure of the complex and the biosynthetic pathway of fatty acid synthesis are discussed.  相似文献   

16.
Active-site peptides of acetyl transferase, condensing enzyme and acyl carrier protein in the neighborhood of the prosthetic group, 4'-phosphopantetheine, of Cephalosporium caerulens fatty acid synthetase were investigated. The enzyme was reacted with [14C]acetyl-CoA or [14C]iodoacetamide. 14C-Labeled enzyme was digested with pepsin, trypsin or both. 14C-Labeled peptides were isolated by several purification procedures. The amino acid sequence of the active site of condensing enzyme was determined to be Tyr-Gln-Val-Glu-Ser-Cys-Pro-Ile-Leu-Glu-Gly-Lys and that of acetyl transferase was Phe-Ser-Gly-Ala-Thr-Gly-His-Ser-Gln-Gly. The amino acid composition around the 4'-phosphopantetheine-carrying serine was determined to be Asx2, Thr, Ser, Glx3, Gly2, Ala, Ile, Leu3, and Lys. When these active-site peptides were compared with those of Saccharomyces cerevisiae synthetase, a high degree of homology was observed in the active-site peptides of the acetyl transferase and acyl carrier protein domains. However, that of the condensing enzyme domain gave lower homology. These findings may support the assumption that the low reactivity of cerulenin with C. caerulens synthetase is a consequence of the structure of the condensing enzyme domain.  相似文献   

17.
The 4'-phosphopantetheine of chicken liver fatty acid synthase was specifically labeled with the fluorescent substrate analog coenzyme A 6-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]aminohexanoate at low salt concentrations. A serine at the active site of the thioesterase was specifically labeled with the fluorescent compounds 6-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]aminopentylmethylphosphono fluoridate and/or pyrenebutyl methylphosphonofluoridate. Dynamic anisotropy measurements indicate the thioesterase has considerable segmental flexibility, whereas the fluorescent labeled 4'-phosphopantetheine does not display detectable local or segmental flexibility. Fluorescence resonance energy transfer measurements indicate that the distance between the fluorescent label at the end of the 4'-phosphopantetheine and NADPH bound to the beta-ketoacyl reductase or enoyl reductase site on the same polypeptide chain is essentially the same, approximately 38 A. The two types of reductases were distinguished by specifically blocking enoyl reductase with pyridoxal 5'-phosphate. No significant energy transfer occurs between sites on different polypeptide chains so that the distances must be greater than 55 A. The distance between the serine on the thioesterase and the 4'-phosphopantetheine on the same polypeptide is 48 A; again no interpolypeptide chain energy transfer was observed. The distance between the serines of the two thioesterases within a fatty acid synthase molecule is greater than 56 A. The monomeric enzyme obtained at 1 degree C does not have beta-ketoacyl synthase and reductase activities. Also fluorescent titrations indicate NADPH is not bound to beta-ketoacyl reductase in monomeric enzyme. The addition of potassium phosphate to the monomers at 1 degree C rapidly dimerizes the enzyme and restores the beta-ketoacyl reductase activity. The beta-ketoacyl synthase activity is slowly restored when the dimer is raised to room temperature. The results obtained suggest that relatively large conformational changes may be part of the catalytic cycle.  相似文献   

18.
A single candidate 4'-phosphopantetheine transferase, identified by BLAST searches of the human genome sequence data base, has been cloned, expressed, and characterized. The human enzyme, which is expressed mainly in the cytosolic compartment in a wide range of tissues, is a 329-residue, monomeric protein. The enzyme is capable of transferring the 4'-phosphopantetheine moiety of coenzyme A to a conserved serine residue in both the acyl carrier protein domain of the human cytosolic multifunctional fatty acid synthase and the acyl carrier protein associated independently with human mitochondria. The human 4'-phosphopantetheine transferase is also capable of phosphopantetheinylation of peptidyl carrier and acyl carrier proteins from prokaryotes. The same human protein also has recently been implicated in phosphopantetheinylation of the alpha-aminoadipate semialdehyde dehydrogenase involved in lysine catabolism (Praphanphoj, V., Sacksteder, K. A., Gould, S. J., Thomas, G. H., and Geraghty, M. T. (2001) Mol. Genet. Metab. 72, 336-342). Thus, in contrast to yeast, which utilizes separate 4'-phosphopantetheine transferases to service each of three different carrier protein substrates, humans appear to utilize a single, broad specificity enzyme for all posttranslational 4'-phosphopantetheinylation reactions.  相似文献   

19.
Rats were treated with clofibrate, a hypolipidemic drug, and with thyroxine. Both drugs which are known to cause peroxisome proliferation, and a concomitant increase in peroxisomal fatty acid beta-oxidation activity in liver increased one of the major integral peroxisomal membrane polypeptides (PMPs), with apparent molecular mass of 69-kDa, six- and twofold, respectively. On the other hand hypothyroidism caused a decrease in peroxisomal fatty acid beta-oxidation activity and considerably lowered the concentration of PMP 69 in the peroxisomal membrane. Two other PMPs with apparent molecular masses of 36 and 22 kDa were not influenced by these treatments. The PMPs with apparent molecular masses of 42, 28, and 26 kDa were shown to be derived from the 69-kDa polypeptide by the activity of a yet uncharacterized endogenous protease during isolation of peroxisomes. Limited proteolysis of intact peroxisomes using proteinase K and subtilisin further substantiated that some portion of the 69-kDa polypeptide extends into the cytoplasm. The 36- and the 22-kDa polypeptides were accessible to proteolytic attack to a much lower extent and, therefore, are supposed to be rather deeply embedded within the peroxisomal membrane. It is demonstrated that peroxisomal acyl-CoA synthetase, an integral PMP extending partially into the cytoplasm, and PMP 69 are not identical polypeptides. Comparison of the peroxisomal membrane with that of mitochondria and microsomes revealed that the 69- and 22-kDa polypeptides as well as the bifunctional protein of the peroxisomal fatty acid beta-oxidation pathway were specifically located only in peroxisomes. Considerable amounts of a polypeptide cross-reacting with the antiserum against the 36-kDa polypeptide were found in mitochondria.  相似文献   

20.
The fatty acid synthetase from lactating rat mammary gland is shown to consist of two polyfunctional polypeptides of similar molecular weight (about 220,000); a 4'-phosphopantetheine residue is covalently bound to one, or both subunits. Limited trypsinization of the fatty acid synthetase releases on enzymatically active thioesterase component which has been purified and its properties studied. The thioesterase sediments in the ultracentrifuge as a single component of molecular weight 32,000; its sedimentation coefficient is 2.9 x 10-(13) s its diffusion coefficient 5.0 x 10-(7) cm2 s-(1). The thioesterase also elutes from a column of Sephadex G-75 as a single, symmetrical peak of constant specific activity. However, electrophoresis of the denatured thioesterase in the presence of sodium dodecyl sulfate reveals that the enzyme has been partially nicked during isolation. The kinetic data of the enzyme reaction were studied using palmityl-CoA as a model substrate. Solvent pH was found to affect both Vmax and Km (Km = 0.5 micron at pH 6.6, 2.5 micron at pH 8.0) wereas solvent ionic strength affected Vmax but no Km. The thioesterases from the fatty acid synthetases of rat liver and lactating mammary gland have identical physical properties, identical amino acid compositions, and are immunologically indistinguishable. Both thioesterases hydrolyze long chain, in preference to short chain, thioesters of CoA, an observation consistent with their role in regulation of the chain-terminating step in fatty acid synthesis by the parent multienzyme complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号