首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.  相似文献   

5.
Metamorphosis of ascidians is a dynamic event by which a nonfeeding, mobile tadpole larva is transformed into a filter-feeding, fixed juvenile. This process usually begins with the settlement of the larva and is followed by a series of coordinated morphogenetic movements that rearrange organs, tissues, and cells. To identify genes that are involved in the initiation of metamorphosis, we conducted differential screening between mRNAs of swimming larvae and those of juveniles in Ciona intestinalis. This screening permitted the isolation of cDNA clones for genes whose expression is upregulated during metamorphosis, and the characterization of four such genes (Ci-meta3, Ci-meta4, Ci-meta5 and Ci-meta6) is reported here. Ci-meta3 encodes a protein with a domain found in Sp1a and the RYanodine receptor. This gene is not expressed in early swimming larvae but is expressed in the endoderm region and part of the retractile tail region in metamorphosing juveniles. The predicted proteins encoded by Ci-meta4, Ci-meta5 and Ci-meta6 do not contain any known consensus motifs, nor do they show any similarity to known proteins. Ci-meta4 and Ci-meta5 are expressed weakly in mesenchyme cells of the early larva and strongly in the metamorphosing juvenile, while Ci-meta6 is expressed in the mesenchyme in the late larva. In addition, we characterized 53 independent cDNA clones whose expression was downregulated during the period from early swimming larvae to metamorphosing juveniles by taking advantage of the Ciona intestinalis cDNA project database and BLAST searches. The expression patterns of some of these clones were changed during the larval period.  相似文献   

6.
To obtain a reliable molecular probe to trace the origin of germ cell lineages in birds, we isolated a chicken homolog (Cvh) to vasa gene (vas), which plays an essential role in germline formation in Drosophila. We demonstrate the germline-specific expression of CVH protein throughout all stages of development. Immunohistochemical analyses using specific antibody raised against CVH protein indicated that CVH protein was localized in cytoplasm of germ cells ranging from presumptive primordial germ cells (PGCs) in uterine-stage embryos to spermatids and oocytes in adult gonads. During the early cleavages, CVH protein was restrictively localized in the basal portion of the cleavage furrow. About 30 CVH-expressing cells were scattered in the central zone of the area pellucida at stage X, later 45-60 cells were found in the hypoblast layer and subsequently 200-250 positive cells were found anteriorly in the germinal crescent due to morphogenetic movement. Furthermore, in the oocytes, CVH protein was predominantly localized in granulofibrillar structures surrounding the mitochondrial cloud and spectrin protein-enriched structure, indicating that the CVH-containing cytoplasmic structure is the precursory germ plasm in the chicken. These results strongly suggest that the chicken germline is determined by maternally inherited factors in the germ plasm.  相似文献   

7.
The origin of germ cells in the ascidian is still unknown. Previously, we cloned a vasa homologue (CiVH) of Ciona intestinalis from the cDNA library of ovarian tissue by polymerase chain reaction and showed that its expression was specific to germ cells in adult and juvenile gonads. In the present study, we prepared a monoclonal antibody against CiVH protein and traced the staining for this antibody from the middle tailbud stage to young adulthood. Results showed that positive cells are present in the endodermal strand in middle tailbud embryos and larvae. When the larval tail was absorbed into the trunk during metamorphosis, the CiVH-positive cells migrated from the debris of the tail into the developing gonad rudiment, and appeared to give rise to a primordial germ cell (PGC) in the young juvenile. The testis rudiment separated from the gonad rudiment, the remainder of which differentiated into the ovary. PGCs of the testis rudiment and the ovary rudiment differentiated into spermatogenic and oogenic cells, respectively. When the larval tail containing the antibody-positive cells was removed, the juveniles did not contain any CiVH-positive cells after metamorphosis, indicating that the PGCs in the juvenile originated from part of the larval tail. However, even in such juveniles, positive cells newly appeared in the gonad rudiment at a later stage. This observation suggests that a compensatory mechanism regulates germline formation in C. intestinalis.  相似文献   

8.
Male germ cell specification and differentiation   总被引:8,自引:0,他引:8  
Understanding the mechanisms by which the germline is induced and maintained should lead to a broader understanding of the means by which pluripotency is acquired and maintained. In this review, two major aspects of male germ cell development are discussed: underlying mechanisms for induction and maintenance of primordial germ cells and the basic signaling pathways that determine spermatogonial cell fate.  相似文献   

9.
10.
原始生殖细胞特化在精子和卵子生成过程中发挥着重要的作用,而PR结构域蛋白质(PR-domain protein,PRDM)家族部分成员参与了该过程。PRDM1可抑制体细胞程序化过程中基因的表达,而PRDM1和PRDM14共同参与了潜在的全能性细胞的重新获取和基因组范围内表观遗传学重编程。这三个过程都是原始生殖细胞特化所必需的。此外,原始生殖细胞特化还需要一些其他因素如骨形态发生蛋白4(bone morphogenetic protein4,Bmp4)和RNA结合蛋白Lin28,这些因素通过影响PRDM发挥生理作用。对原始生殖细胞特化的理解有利于生殖细胞发育和相关问题的研究。  相似文献   

11.
We isolated 5' flanking regions of four genes, Ci-Galphai1, Ci-arr, Ci-vAChTP, and Ci-vGAT, each of which is expressed in distinct sets of neurons in the central nervous system of the ascidian Ciona intestinalis, and we examined their function by introducing green fluorescent protein (GFP)-fusion constructs into Ciona embryos. The reporter gene driven by the 5' flanking region of Ci-Galphai1, Ci-arr, and Ci-vAChTP recapitulated the endogenous gene expression patterns, while that of Ci-vGAT can drive GFP expression in particular subsets of neurons expressing the endogenous gene. Deletion analysis revealed that the Ci-Galphai1 promoter consists of multiple regulatory modules controlling the expression in different types of cells. The GFP fluorescence enabled visualization of cell bodies and axons of different sets of neurons in ascidian larvae. These promoters can be a powerful tool for studying molecular mechanisms of neuronal development as well as neuron networks and functions in ascidians.  相似文献   

12.
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.  相似文献   

13.
Summary: Targeted mutagenesis of genes‐of‐interest, or gene‐knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN‐mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN‐mediated germ cell mutagenesis. genesis 52:431–439, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
In ascidians, the events of metamorphosis transform the non-feeding, mobile tadpole larva into a filter-feeding, fixed juvenile, and the process involves rearrangements of cells, two organs and physiological changes. Differential screening was used to isolate two genes that are not expressed in swimming larvae but are expressed immediately after the initiation of metamorphosis in Ciona intestinalis. One of the genes, Ci-meta1, encodes a polypeptide with a putative secretion signal sequence, 6 epidermal growth factor (EGF)-like repeats and 13 calcium-binding EGF-like repeats. The gene begins to be expressed immediately after the beginning of metamorphosis in the adhesive organ and is likely to be associated with the signal response for metamorphosis. Another gene named Ci-meta2 encodes a protein with a putative secretion signal and three thrombospondin type-1 repeats. Ci-meta2 gene expression begins at the larval stage and is upregulated in the metamorphosing juveniles. Ci-meta2 expression is found in three regions; the adhesive organ which is also associated with settlement, the neck region between the trunk and the tail of the larva which is associated with tail resorption, and dorsal regions of the trunk which correspond to the location of the siphon primordium. This gene may be involved in the dynamic arrangement of cells during ascidian metamorphosis.  相似文献   

16.
Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis.  相似文献   

17.
A Ciona intestinalis cDNA clone that encodes a protein highly homologous to other tyrosinases was isolated. Northern blot analysis showed that expression of Ciona tyrosinase starts at the early neurula stage and continues throughout the tail-bud and tadpole larval stages. The earliest tyrosinase expression was detected, by in situ hybridization, at the neural plate stage, in pigment precursor cells located along the two neural folds, in the animal region of the embryo. In the course of embryonic development the strong hybridization signal was always localized, within the rostral part of the developing brain, in the pigment precursor cells and was later detected in the otolith and ocellus. These results are discussed in relation to tyrosinase as an early marker of neural induction.  相似文献   

18.
19.
20.
Morphological changes in the tunic layers and migration of the test cells during swimming period in the larva of the ascidian, Ciona intestinalis , were observed by light and electron microscopy. The swimming period was divided into three stages. In stage 1, further formation of juvenile tunic layer started only in the larval trunk and neck region. In stage 2, the layer became swollen in the ventral and dorsal sides of the neck region and in stage 3, the swelling expanded backward. Concomitantly with these changes, the outermost larval tunic layer (outer cuticular layer), which had been formed before hatching, also swelled in the neck region in stage 2 and formed two humps in stage 3, although the layer did not change in the tail region during the swimming period. Test cells that were present over the entire larval tunic layer in stage 1 began to move from the surface of the fin toward that of the side of the body in stage 2, and finally gathered to form six bands running radially from the anterior end to the posterior end of the trunk region and aligned along the lateral sides of body in the tail region in stage 3. In electron microscopic observations, pseudopodia protruding from the test cells invaded the larval tunic, following which they extended proximate to the juvenile tunic in the trunk region. In the tail region, which had no juvenile tunic layer as that described, the pseudopodia invaded and remained adjacent to the surface of the epidermis or the sensory cilia protruded from the epidermis. Metamorphosis of the larvae, further tunic formation, degradation of adhesive papilla, attachment of larva to the substratum and tail resorption commenced after these morphological changes occurred. The possible role of the test cells in metamorphosis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号