首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lemna paucicostata LP6, a strain of duckweed isolated locally,does not flower under any photoperiodic schedule when grownin Bonner and Devirian or other media routinely employed invarious laboratories for studies on flowering in Lemnaceae.Flowering in this strain could be induced, however, by 8-hydroxyquinoline(8-HQ)—a well-known copper chelating agent—irrespectiveof the length of the photoperiod. To our knowledge, this isthe first report where a direct induction of flowering in aduckweed by 8-HQ has been observed. Atomic absorption analysisof the plant material revealed that the endogenous level ofcopper is significantly higher in the plants treated with 8-HQ.This is contrary to the general assumption that chelating agentsinfluence flowering of duckweeds by causing a reduction in theuptake of copper ions and making them less available to theplants. (Received May 23, 1983; Accepted July 22, 1983)  相似文献   

2.
Wolffia microscopica, a duckweed, flowers in response to a singlephotoinductive SD cycle of 16 h dark and 8 h light. Floweringin W. microscopica could be induced, under non-inductive longdays, by 8-hydroxyquinoline (8-HQ). Flowering was initiatedwith 10–6 M 8-HQ and maximum flowering (ca. 75%) was obtainedat 5 x 10–6M level. Flowering was accentuated furtherwhen plants, supplied with 8-HQ, were subjected to SD cycles. (Received September 13, 1985; Accepted December 4, 1985)  相似文献   

3.
Oota  Yukito 《Plant & cell physiology》1983,24(8):1503-1510
The critical day length or the length of the critical photoperiodfor the short-day duckweed, Lemna paucicostata 6746 is about14 h (Oota 1983). With the min-SD method, I found that not thewhole critical photoperiod but only its initial and terminalbrief fractions, called respectively the LI- and L2-phases,need be illuminated for a given day to be a noninductive day.Inversely, the darkened LI- and/or L2-phase makes the day inductive.The rest of the day can be either darkened or illuminated withoutmodifying the inductive or noninductive property of the day. Thus, the physiological structure of the critical photoperiodfor L. paucicostata 6746 closely resembles that of the criticalphotoperiod for the long-day duckweed, L. gibba G3 (Oota 1981). (Received May 24, 1983; Accepted September 21, 1983)  相似文献   

4.
Vitamins K1 K3 and K5 induced flowering in Lemna paucicostata151, a short-day plant, cultured in 1/10 strength M medium (1/10M medium) under continuous light, and their activity was greatlyintensified by simultaneous application of benzyladenine. Themost active of these was vitamin K5 L. paucicostata 6746 ismore sensitive to vitamin K5 than strain 151, but the effectof vitamin K5 on strain 6746 was not intensified by benzyladenine.The flower-inducing activity of vitamin K5 was intensified bythe addition of benzoic acid in both strains and by the additionof copper or ferricyanide in Strain 6746, when these chemicalswere added at such low concentrations that they would scarcelyinduce flowering. In strain 6746, vitamin K5 added to 1/10 M had little effecton flowering under a subcritical photoperiod, while it clearlyinduced flowering under continuous light. In this strain, vitaminK5 added to full strength M medium, in which this plant wasmore sensitive to short photoperiods than in 1/10 M medium,did not induce flowering even under continuous light, and wasrather inhibitory under short photoperiods. (Received August 14, 1984; Accepted October 16, 1984)  相似文献   

5.
Flowering of Lemna gibba G3, a long-day duckweed, was inhibitedby adding CuSO4, AgNO3, HgCl2, Na2WO4 or iodoacetamide to themedium at the concentrations inducing long-day flowering inLemna paucicostata 6746, a short-day duckweed. This suggeststhat these metabolic inhibitors affected the photoperiodic sensitivityrather than directly affecting flower initiation. Ferricyanidepromoted flowering in both of these short-day and long-day duckweeds. (Received July 7, 1977; )  相似文献   

6.
Lemna paucicostata 6746 is a short-day plant and flowers inresponse to a single photoinductive cycle. Flowering in thisduckweed could be promoted, under short days, in the presenceof a cytokinin in the nutrient medium. 6-Benzyladenine (BA)was the most effective for promotion of flowering, followedby zeatin and kinetin. Since EDTA itself is promotive for floweringin this plant, the cytokinin effect is best observed in mediumdevoid of EDTA. Nevertheless, in their combined presence floweringwas more as compared to when either of these was individuallypresent. This additive effect on flowering was especially prominentwhen the plants were kept in near-critical photoperiods. Besidesthe increase in percentage of the flowering fronds, floweringis also sustained a little longer in the cytokinin-treated plants.BA, however, did not alter the critical dark period requirement,either in the presence or absence of EDTA. (Received March 26, 1983; Accepted May 6, 1983)  相似文献   

7.
L-Pipecolic acid was found to be effective in inducing floweringof Lemna paucicostata 151, 381, 441 and 6746, and of Lemna gibbaG3. When the plants were grown on half-strength Hutner's medium,L-pipecolic acid caused profuse flowering of L. paucicostata151 maintained under 9 and 10 h of light daily. In L. paucicostata441 and 6746, L-pipecolic acid had a strong flower-promotingeffect under a near critical photoperiod. In L. paucicostata381, by contrast, L-pipecolic acid had only a very small effecton flowering. In L. gibba G3 substantial promotion of floweringwas observed under continuous light. When one-twentieth-strengthHutner's medium was used as the basic medium, L-pipecolic acidstimulated flowering in all strains of Lemna examined, evenunder continuous light. When L. paucicostata 151 was grown on one-tenth-strength M mediumor one-twentieth-strength Hutner's medium, the flower-inducingactivity of L-pipecolic acid was greatly enhanced by cytokininunder continuous light. However, when this strain was grownwith 9 h of illumination daily, this synergistic effect of cytokininwas only slight. A short-term (even 1-h) treatment with L-pipecolicacid resulted in flowering, suggesting that L-pipecolic acidis involved in the induction of flowering, rather than its evocation.D-Pipecolic acid also had flower-inducing activity, but itsactivity was 50 times lower than that of the L-isomer. (Received January 23, 1992; Accepted March 9, 1992)  相似文献   

8.
Flowering of Lemna paucicostata 6746, a typical short-day plant,was induced by culture for 96 or 120 h in nitrogen-free mediumunder continuous illumination. To examine the effects of lysine,we homogenized entire plants of L. paucicostata 151 in a solutionof lysine and the supernatant obtained after centrifugationof the homogenate was added to the medium to give various concentrationsof lysine in the medium. Flowering of strain 6746 in nitrogen-freeor nitrogen-deficient culture medium was effectively promotedby the addition of a lysine-containing supernatant to the medium.The suppressive effect of elastatinal, a protease inhibitor,on the induction of flowering was almost completely reversedby the simultaneous application of a lysine-containing supernatantto the medium. During nitrogen-free culture, the level of endogenousfree lysine, expressed on the basis of the amount of total freeamino acids, increased. Lysine-containing supernatants alsoinduced flowering of plants in nitrogen-rich medium under continuousillumination. These findings suggest that endogenous lysineis involved in the induction of flowering in L. paucicostata6746 on nitrogen-free or nitrogen-deficient medium, as it isin the induction of flowering in L. paucicostata 151 (Received July 29, 1996; Accepted November 18, 1996)  相似文献   

9.
The effects of light quality on the photoperiodic control inthe flowering of a SD duckweed, Lemna perpusilla strain 6746,and a LD duckweed, L. gibba strain G3, were investigated withspecial reference to the interaction between R and B or FR lights. In the diurnal alternation of R or G light and dark periods,L. perpusilla responded as a SDP, but in that of B or FR lightit was almost daylength-indifferent. On the other hand, L. gibbaresponded as a LDP under B, R or FR light, although the criticallight length was altered by the light quality. In the diurnal alternation of R and B or FR light periods containingno dark period, L. perpusilla flowered with the shortening ofthe optimal and critical R light lengths, compared with theplant exposed to that of R light and dark period. The floweringresponse of L. gibba to the R light length showed double peaks,that is, the first peak at the R duration less than 9 hours,and the second at the R duration longer than 9 hours. The firstpeak corresponds to the optimal R light length in L. perpusilla. Under the CL with a mixture of R and B or FR lights, the floweringand frond production were influenced by the intensity ratioof two light given. In both plants, the optimal ratio of B toR or FR to R for the flowering was always greater than thatfor the frond production. It is suggested that the B or FR light interacts with the Rlight in the photoperiodic process in the plants and this interactionbetween the R and B or FR lights should be of importance forobtaining a better understanding of photoperiodism. (Received August 28, 1965; )  相似文献   

10.
Flowering in the short-day plant Lemna paucicostata 6746 canbe induced under continuous light by the addition of ferricyanie,ferrocyanide or KCN to M-sucrose medium. Each substance is nearly10 times more effective when the flasks are covered by glassbeakers than when cotton plugs are used. By contrast, when floweringis induced under continuous light by copper or by short-daytreatment, neither flowering nor growth are affected by whetherglass beakers or cotton plugs are used. Ferricyanide, ferrocyanideand KCN are also able to induce long-day flowering when theplants are grown on Msucrose medium in small beakers that areplaced in a covered storage dish that also contains a solutionof one of these compounds. Addition of a KOH trap to the storagedish completely blocks the flowering induced by these compounds.If [14C]ferrocyanide is added to the storage dish both the M-sucrosemedium and the plants contain significant amounts of radioactivity,the amount of radioactivity being proportional to the floweringresponse. These results indicate that ferricyanide, ferrocyanideand KCN break down to release HCN and that it is the HCN whichis responsible for inducing flowering in L. paucicostata 6746under continuous light. 1Present address: Department of Biology, Osaka Kyoiku University,Ikeda, Osaka 563, Japan. 2Present address: Institute of Horticulture, The Volcani Center,P. O. B. 6, Bet-Dagan, Israel. (Received January 17, 1983; Accepted March 24, 1983)  相似文献   

11.
Lemna perpusilla 6746, a short-day duckweed, flowered undercontinuous illumination if some of the SH inhibitors, such ascyanide or tungstate were added to the M-sucrose medium. Theeffect of tungstate was not overcome by simultaneous applicationof molybdate, but deletion of the Mo from the medium was enoughto induce the long-day flowering. In vivo assay of nitrate reductaseactivity suggested that nitrate reduction was not inhibitedby tungstate, CuSO4 or AgNO3 which induced longday flowering.The possibility was suggested that suppression of some Mo-requiringprocess other than nitrate reduction brings about the long-dayflowering in this plant. (Received November 12, 1975; )  相似文献   

12.
Flowering in Wolffia microscopica, a short-day plant, couldbe induced with salicylic acid (SA), under long days. Aspirin,benzoic acid and salicylaldoxime were also effective for inductionof flowering in this duckweed. Amonsgt these, SA is the mosteffective compound, as it could induce flowering even at 10–7M. Flowering was further enhanced when Wolffia fronds were subjectedto short days, in the presence of SA. However, SA neither showedany effect on flowering ofW. microscopica in the absence ofEDTA in the nutrient medium, nor could it, by itself, supporteven the vegetative growth. The probable mechanism of actionof SA has also been discussed. It appears that the effect cannotbe due simply to chelation of metal ions and perhaps the salicylmoiety itself exerts a specific effect. (Received March 15, 1983; Accepted May 6, 1983)  相似文献   

13.
Flowering in Lemna paucicostata 6746 could be induced by tannic acid under strictly non-inductive photoperiods. This polyphenol completely abolished the photoperiodic sensitivity of strain 6746 as flowering could also be obtained under continuous light (nearly 80% flowering was recorded in the plants supplied with 10−5 tannic acid). Though its mode of action is unknown, tannic acid is unlikely to act as a gibberellin-antagonist in its effect on flowering in strain 6746.  相似文献   

14.
Four inhibitors of proteases, namely, bestatin, diisopropylfluorophosphate, elastatinal and p-toluenesulfonyl-L-lysinechloromethyl ketone hydrochloride, were examined for their effectson flowering of a short-day plant Lemna paucicostata 6746 anda long-day plant Lemna gibba G3. Each of the inhibitors greatlyinhibited the flowering of Lemna paucicostata 6746 that is normallyinduced by nitrogen deficiency. Bestatin or elastatinal givenonly during the first half of the culture period inhibited theflowering more clearly than when each was given during the latterhalf, suggesting that they inhibited the inductive process(es)involved in flowering rather than development of flower buds.Bestatin or elastatinal greatly inhibited the flowering of Lemnapaucicostata 6746 induced by photoperiodic stimulus, ferricyanideand continuous far-red light. Simultaneous application of thesetwo inhibitors was more effective in the inhibition of photoperiodicallyinduced and ferricyanide-induced flowering than was each inhibitoralone. They also completely inhibited the photoperiodic floweringof Lemna gibba G3. These results suggest that the inductionor activation of some proteases, probably followed by the degradationof some protein(s), is necessary for the induction of floweringin both these plants. (Received November 21, 1989; Accepted February 19, 1990)  相似文献   

15.
The potassium uptake activity of the "flow-medium culture" ofa long-day duckweed, Lemna gibba G3, followed a circadian rhythmwhich persisted for more than 5 days under continuous light.The period of the rhythm was about 25 hr under 3000 lux at 26?Cand was slightly over-compensated against temperature, Q10 beinga little less than 1.0. The amplitude of the rhythm was dependenton light intensity, and there was no potassium uptake in thedark. Magnesium uptake was affected by the potassium movementand showed circadian rhythmicity with a small amplitude underconditions where the potassium uptake was already saturated.Calcium uptake did not show any obvious rhythm. In Contrastto L. gibba, a short-day duckweed L. perpusilla 6746 displayedcircadian rhythm of potassium uptake only in the dark and notin the light. This rhythm did not persist beyond the secondcycle. (Received June 13, 1978; )  相似文献   

16.
Flowering responses of Lemna perpusilla strain 6746, a short-dayplant, and L. gibba strain G3, a long-day plant, to nitrateconcentration in Hoagland's type medium with or without EDTA,were compared. Maximum flowering of L. perpusilla under SD occurredat higher nitrate concentrations than did colony proliferation.Even under CL, L. perpusilla grown at sub-optimal nitrate concentrationsfor colony proliferation, flowered irrespective of the presenceof EDTA which reduces flowering. Unlike L. perpusilla, L. gibba failed to flower under SD atany nitrate concentration whether or not EDTA was added. UnderCL, however, L. gibba flowered at almost any nitrate concentrationwith or without EDTA. Double optima for nitrate concentrationwas exhibited in the presence of EDTA; optimal concentrationfor colony proliferation came between the two optima for flowering. We concluded that the nitrogen level of the medium is importantin regulating flowering of duckweeds, and that the effect ofEDTA, if any, may primarily be on colony proliferation and onlysecondarily or antagonistically on flowering. 1 Present address: Institute for Agricultural Research, TohokuUniversity, Sendai 980, Japan. (Received September 25, 1971; )  相似文献   

17.
Long-day flowering of wild-type Lemna perpusilla (strain 6746)on ammonium-free medium with sucrose occurred in continuouslight of low intensity (25 ft-c). In higher intensities of light,frond production was increased and flowering was reduced. Thephotosynthetic inhibitor DCMU inhibited frond production andpromoted flowering in the presence or absence of exogenous sucrose.In the photosynthetic mutant strain 1073, the higher intensitiesof light inhibited frond production, but did not reduce flowering.DCMU increased mutant frond production, thus leading to increasedflowering percents. The mechanism by which DCMU affects floweringand growth appears to differ from that of other flower-promotingsupplements reported by Takimoto and Tanaka. The results suggestthat inhibition of photosynthesis enhances flowering in longdays. (Received June 25, 1977; )  相似文献   

18.
In the presence of the chelating agent EDDHA, long-day duckweedLemna gibba G3 was induced to flower under a short-day scheduleof 9 hr of light and 15 hr of darkness in a 24-hr cycle. Weconcluded that EDDHA creates effects very similar to those ofsalicylic acid. When EDDHA or salicylic acid was added to thenutrient medium in combination with BA, flowering was inducedeven under conditions of 8 hr of light and 16 hr of darkness.Under a photoperiod of 9 hr, BA markedly enhanced the effectof EDDHA as well as salicylic acid. On the other hand, BA alonewas ineffective as far as flowering was concerned. By quantitativeinteractions, BA seems to complement the modifying effect ofEDDHA or salicylic acid on flowering in this duckweed strain. (Received June 25, 1976; )  相似文献   

19.
Lemna paucicostata 6746, a short-day plant, produced flowerbuds even under continuous light when cultured in nitrogen-deficientmodified Hoagland medium with 1% sucrose for 3 days or morefollowed by culture on nitrogen-rich medium (either nitrateor ammonium). Flowering was also induced by culture on mediumcontaining 20–100 µM nitrate as the sole nitrogensource for 10 days or more, but not on medium with a low ammoniumconcentration. However, if plants cultured on medium containing5–20 µM ammonium as the sole nitrogen source for10 days were grown in a nitrogen-rich medium for a further 4days, they produced flower buds. Thus, nitrogen deficiency caninduce day length-independent flowering in Lemna paucicoslata6746, but nitrogen is required for the manifestation of flowering. (Received January 31, 1986; Accepted April 24, 1986)  相似文献   

20.
The short-day duckweed Lemna paucicostata 6746 could be inducedto flower in two days at 26C when continuous illumination forentrainment was followed by continuous darkness. This 48-h darkperiod or the minimum darkness requirement for floral inductionwas called the induction period. The length of the inductionperiod (IP) was routinely computed as the number of 24-h cyclesusing the equation of regression of flower number in logarithmon culture time. A light pulse given about 7 h after the startof the induction period increased the apparent IP value fromtwo to three, suggesting that the interrupted first day hadfunctioned as a noninductive day. A pulse given at any otherpart of the induction period did not modify the IP value. Thelight-sensitive part is probably the inducible phase, and thefirst 7-h period of darkness terminated by it seems to be thecritical nyctoperiod. These and relevant facts suggest thatthe light-off oscillator measures the critical night length,7 h. Either red or far-red irradiation at the inducible phase extendedthe IP value by one. No red/far-red photoreversibility was detected.As expected, however, red or far-red irradiation of any otherpart of the critical nyctoperiod could not modify the IP value. (Received February 8, 1985; Accepted May 14, 1985)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号