首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
At the site of a legionellosis outbreak, amoebae and two ciliates, Tetrahymena sp. and Cyclidium sp., were isolated from cooling-tower water containing Legionella pneumophila. The Tetrahymena sp. and the amoebae repeatedly showed the ability to support intracellular multiplication of L. pneumophila. Both were isolated from cooling towers specifically implicated as the source for the spread of legionellosis. These protozoa may be reservoirs supporting the survival and multiplication of virulent legionellae in cooling-tower water.  相似文献   

2.
Some protozoans isolated from aquatic habitats, including domestic water supplies, can support the intracellular replication of autochthonous legionellae in vitro. We studied the effect of incubating water samples containing amoebae on the sensitivity of culture for legionellae. Samples collected during investigations of legionellosis epidemics and shown by conventional culture procedures to contain amoebae, but not legionellae, were incubated at 35 degrees C and replated. Legionellae were recovered from 59 of 144 such samples. Species isolated included L. pneumophila, L. anisa, L. bozemanii, L. gormanii, L. micdadei, L. rubrilucens, L. sainthelensi, L. steigerwaltii, and an unnamed species. Acanthamoeba polyphaga, Acanthamoeba hatchetti, a Rosculus sp., Hartmannella vermiformis, and Vahlkampfia spp. were among the autochthonous amoebae identified. Legionellae were recovered by this procedure from only 3 of 63 samples that were negative for amoebae by conventional culture procedures. These results show that water samples negative for legionellae, but positive for amoebae, by standard culture techniques should be incubated and replated to maximize the sensitivity of culture for legionellae.  相似文献   

3.
Some protozoans isolated from aquatic habitats, including domestic water supplies, can support the intracellular replication of autochthonous legionellae in vitro. We studied the effect of incubating water samples containing amoebae on the sensitivity of culture for legionellae. Samples collected during investigations of legionellosis epidemics and shown by conventional culture procedures to contain amoebae, but not legionellae, were incubated at 35 degrees C and replated. Legionellae were recovered from 59 of 144 such samples. Species isolated included L. pneumophila, L. anisa, L. bozemanii, L. gormanii, L. micdadei, L. rubrilucens, L. sainthelensi, L. steigerwaltii, and an unnamed species. Acanthamoeba polyphaga, Acanthamoeba hatchetti, a Rosculus sp., Hartmannella vermiformis, and Vahlkampfia spp. were among the autochthonous amoebae identified. Legionellae were recovered by this procedure from only 3 of 63 samples that were negative for amoebae by conventional culture procedures. These results show that water samples negative for legionellae, but positive for amoebae, by standard culture techniques should be incubated and replated to maximize the sensitivity of culture for legionellae.  相似文献   

4.
Photosynthetic cyanobacteria, heterotrophic bacteria, free-living amoebae, and ciliated protozoa may support growth of Legionella pneumophila. Studies were done with two tap water cultures (WS1 and WS2) containing L. pneumophila and associated microbiota to characterize growth-supporting activity and assess the relative importance of the microbiota in supporting multiplication of L. pneumophila. The water cultures were incubated in the dark at 35 degrees C. The growth-supporting factor(s) was separated from each culture by filtration through 1-micron-pore-size membrane filters. The retentate was then suspended in sterile tap water. Multiplication of L. pneumophila occurred when both the retentate suspension and the filtrate from either culture were inoculated into sterile tap water. L. pneumophila did not multiply in tap water inoculated with only the filtrate, even though filtration did not reduce the concentration of L. pneumophila or heterotrophic bacteria in either culture. Growth-supporting activity of the retentate suspension from WS1 was inactivated at 60 degrees C but unaffected at 0, 25, and 45 degrees C after 30-min incubations. Filtration experiments indicated that the growth-supporting factor(s) in WS1 was 2 to 5 micron in diameter. Ciliated protozoa were not detected in either culture. Hartmannellid amoebae were conclusively demonstrated in WS2 but not in WS1. L. pneumophila multiplied in tap water inoculated with the amoebae (10(3)/ml) and the 1-micron filtrate of WS2. No multiplication occurred in tap water inoculated with the filtrate only. Growth-supporting activity for L. pneumophila may be present in plumbing systems; hartmannellid amoebae appear to be important determinants of multiplication of L. pneumophila in some tap water cultures.  相似文献   

5.
Photosynthetic cyanobacteria, heterotrophic bacteria, free-living amoebae, and ciliated protozoa may support growth of Legionella pneumophila. Studies were done with two tap water cultures (WS1 and WS2) containing L. pneumophila and associated microbiota to characterize growth-supporting activity and assess the relative importance of the microbiota in supporting multiplication of L. pneumophila. The water cultures were incubated in the dark at 35 degrees C. The growth-supporting factor(s) was separated from each culture by filtration through 1-micron-pore-size membrane filters. The retentate was then suspended in sterile tap water. Multiplication of L. pneumophila occurred when both the retentate suspension and the filtrate from either culture were inoculated into sterile tap water. L. pneumophila did not multiply in tap water inoculated with only the filtrate, even though filtration did not reduce the concentration of L. pneumophila or heterotrophic bacteria in either culture. Growth-supporting activity of the retentate suspension from WS1 was inactivated at 60 degrees C but unaffected at 0, 25, and 45 degrees C after 30-min incubations. Filtration experiments indicated that the growth-supporting factor(s) in WS1 was 2 to 5 micron in diameter. Ciliated protozoa were not detected in either culture. Hartmannellid amoebae were conclusively demonstrated in WS2 but not in WS1. L. pneumophila multiplied in tap water inoculated with the amoebae (10(3)/ml) and the 1-micron filtrate of WS2. No multiplication occurred in tap water inoculated with the filtrate only. Growth-supporting activity for L. pneumophila may be present in plumbing systems; hartmannellid amoebae appear to be important determinants of multiplication of L. pneumophila in some tap water cultures.  相似文献   

6.
Legionella pneumophila is a gram-negative bacterium prevalent in fresh water which accidentally infects humans and is responsible for the disease called legionellosis. Intracellular growth of L. pneumophila in Tetrahymena is inconsistent; in the species Tetrahymena tropicalis stationary-phase forms (SPFs) of L. pneumophila differentiate into mature intracellular forms (MIFs) without apparent bacterial replication and are expelled from the ciliate as pellets containing numerous MIFS. In the present work, we tested the impact of L. pneumophila passage through T. tropicalis. We observed that MIFs released from T. tropicalis are more resistant to various stresses than SPFs. Under our conditions, MIFs harboured a higher gentamicin resistance, maintained even after 3 months as pellets. Long-term survival essays revealed that MIFs survived better in a nutrient-poor environment than SFPs, as a reduction of only about 3 logs was observed after 4 months in the MIF population, whereas no cultivable SPFs were detected after 3 months in the same medium, corresponding to a loss of about 7 logs. We have also observed that MIFs are significantly more infectious in human pneumocyte cells compared with SPFs. These results strongly suggest a potential role of ciliates in increasing the risk of legionellosis.  相似文献   

7.
We studied the ability ofLegionella to multiply in potable water samples obtained from investigations of nosocomial legionellosis. AutochthonousLegionella multiplied in three of 14 hospital water samples after incubation at 35°C and 42°C. All three samples were from hot water tanks. Multiplication did not occur when a selected sample was filtered through a 0.45-m membrane and reinoculated with indigenousLegionella. We isolated bothLegionella pneumophila and one or more species of free-living amoebae, primarity members of theHartmannellidae, from each of these hot water tank samples. Amoebae from a total of six hot water tank samples were used for cocultivation studies withL. pneumophila. All amoebae supported multiplication ofLegionella in coculture at 35°C. Four of six isolates of amoebae supported multiplication oflegionella at 42°C, while none supported multiplication at 45°C. Gimenez staining and electron microscopy showed thatLegionella multiplied intracellularly in amoebae. Control of these amoebae in potable water may prevent colonization and multiplication ofLegionella in domestic hot water systems.  相似文献   

8.
Free-living amoebae have been found to be a reservoir for various pathogenic bacteria in aquatic environments. For example, the Acanthamoeba genus renders possible the intracellular multiplication of Legionella pneumophila, which is responsible for legionellosis. It consequently matters to quantify Acanthamoeba cells and thereby enhance our assessment of the risk of contamination. The classical microbiological method of quantification relies on amoebae growth and most probable number calculation. We have developed a real-time PCR assay based on a TaqMan probe that hybridizes onto 18S rDNA. This probe is specific to the Acanthamoeba genus. The assay was successful with both the trophozoite and the cyst forms of Acanthamoeba. Highly sensitive, it proved to permit detection of fewer than 10 cells, even those that are not easily cultivable, such as the cyst forms.  相似文献   

9.
In view of the wide-spread existence of legionellae in cooling-tower and other environmental water, asymptomatic infection of this organism could occur. In order to verify the possibility of colonization of legionellae at lower respiratory tract of patients with various pulmonary diseases, a total of 22,036 sputum samples from in- and out-patients at National Sanyoso Hospital were examined during a five-year period from September, 1984 to August, 1989. Four (0.073%) out of 5,502 cases were culture-positive for L. pneumophila. L. pneumophila strains were isolated from expectorated, subsequently washed sputum samples of two male and two female patients with respiratory tract diseases. The identification of the isolates was genetically confirmed by the fluorometric microplate DNA-DNA hybridization method. The serogroup (SG) and viable counts of L. pneumophila per ml of sputum of each patient were as follows: 73 y/o female K.H., SG-6, 10(3) CFU; 75 y/o male H.J., SG-5, 10(4) CFU; 61 y/o female M.S., SG-5, 10(5) CFU; and 77 y/o male M.G., not-agglutinable against SG-1-6 antisera, 10(4) CFU. None of the four patients was clinically suspected of legionellosis and antibody titer of paired sera remained 1:64 or lower than 1:32. From these findings, we concluded that L. pneumophila can cause, though quite rarely, asymptomatic infection in human respiratory tract. None of the environmental samples obtained from in- and out-side of the Hospital was culture-positive for legionellae. Thus, the source of infection has remained unknown.  相似文献   

10.
Survival and distribution of legionellae in the environment are assumed to be associated with their multiplication in amoebae, whereas the ability to multiply in macrophages is usually regarded to correspond to pathogenicity. Since most investigations focused on Legionella pneumophila serogroup 1, we examined the intracellular multiplication of different Legionella species in Mono Mac 6 cells, which express phenotypic and functional features of mature monocytes, and in Acanthamoeba castellanii, an environmental host of Legionella spp. According to the bacterial doubling time in Mono Mac 6 cells and in A. castellanii, seven clusters of legionellae could be defined which could be split further with regard to finer differences. L. longbeachae serogroup 1, L. jordanis, and L. anisa were not able to multiply in either A. castellanii or Mono Mac 6 cells and are members of the first cluster. L. dumoffi did not multiply in Mono Mac 6 cells but showed a delayed multiplication in A. castellanii 72 h after infection and is the only member of the second cluster. L. steigerwaltii, L. gormanii, L. pneumophila serogroup 6 ATCC 33215, L. bozemanii, and L. micdadei showed a stable bacterial count in Mono Mac 6 cells after infection but a decreasing count in amoebae. They can be regarded as members of the third cluster. As the only member of the fourth cluster, L. oakridgensis was able to multiply slight in Mono Mac 6 cells but was killed within amoebae. A strain of L. pneumophila serogroup 1 Philadelphia obtained after 30 passages on SMH agar and a strain of L. pneumophila serogroup 1 Philadelphia obtained after intraperitoneal growth in guinea pigs are members of the fifth cluster, which showed multiplication in Mono Mac 6 cells but a decrease of bacterial counts in A. castellanii. The sixth cluster is characterized by intracellular multiplication in both host cell systems and consists of several strains of L. pneumophila serogroup 1 Philadelphia, a strain of L. pneumophila serogroup 2, and a fresh clinical isolate of L. pneumophila serogroup 6. Members of the seventh cluster are a strain of agar-adapted L. pneumophila serogroup 1 Bellingham and a strain of L. pneumophila serogroup 1 Bellingham which was passaged fewer than three times on BCYE alpha agar after inoculation and intraperitoneal growth in guinea pigs. In comparison to members of the sixth cluster, both strains showed a slightly enhanced multiplication in Mono Mac 6 cells but a reduced multiplication in amoebae. From our investigations, we could demonstrate a correlation between prevalence of a given Legionella species and their intracellular multiplication in Mono Mac 6 cells. Multiplication of members of the genus Legionella in A. castellanii seems to be dependent on mechanisms different from those in monocytes.  相似文献   

11.
A free-living amoeba identified as Hartmannella vermiformis was isolated from a water sample obtained during an investigation of nosocomial legionellosis. Hartmannella vermiformis is known to support the intracellular multiplication of Legionella pneumophila. This strain of H. vermiformis, designated CDC-19, was cloned and established in axenic culture to develop a model for the study of the pathogenicity of legionellae. Isoenzyme patterns of axenically-cultivated strain CDC-19 were compared with two strains of H. vermiformis derived from the type strain, one axenic (ATCC 50236) and the other grown in the presence of bacteria (ATCC 30966). Enzyme patterns suggested that all three strains are assignable to the species H. vermiformis. Axenic H. vermiformis strain CDC-19 has been deposited with the American Type Culture Collection (ATCC 50237) and should prove useful in the study of protozoan-bacterial interaction.  相似文献   

12.
ABSTRACT. A free-living amoeba identified as Hartmannella vermiformis was isolated from a water sample obtained during an investigation of nosocomial legionellosis. Hartmannella vermiformis is known to support the intracellular multiplication of Legionella pneumophila . This strain of H. vermiformis , designated CDC-19, was cloned and established in axenic culture to develop a model for the study of the pathogenicity of legionellae. Isoenzyme patterns of axenically-cultivated strain CDC-19 were compared with two strains of H. vermiformis derived from the type strain, one axenic (ATCC 50236) and the other grown in the presence of bacteria (ATCC 30966). Enzyme patterns suggested that all three strains are assignable to the species H. vermiformis. Axenic H. vermiformis strain CDC-19 has been deposited with the American Type Culture Collection (ATCC 50237) and should prove useful in the study of protozoan-bacterial interaction.  相似文献   

13.
Previous studies using a murine model of coinhalation of Legionella pneumophila and Hartmannella vermiformis have shown a significantly enhanced intrapulmonary growth of L. pneumophila in comparison to inhalation of legionellae alone (J. Brieland, M. McClain, L. Heath, C. Chrisp, G. Huffnagle, M. LeGendre, M. Hurley, J. Fantone, and C. Engleberg, Infect. Immun. 64:2449-2456, 1996). In this study, we introduce an in vitro coculture model of legionellae, Mono Mac 6 cells (MM6) and Acanthamoeba castellanii, using a cell culture chamber system which separates both cell types by a microporous polycarbonate membrane impervious to bacteria, amoebae, and human cells. Whereas L. pneumophila has shown a maximal 4-log-unit multiplication within MM6, which could not be further increased by coculture with Acanthamoeba castellanii, significantly enhanced replication of L. gormanii, L. micdadei, L. steigerwaltii, L. longbeachae, and L. dumoffii was seen after coculture with amoebae. This effect was seen only with uninfected amoebae, not with Legionella-infected amoebae. The supporting effect for intracellular multiplication in MM6 could be reproduced in part by addition of a cell-free coculture supernatant obtained from a coincubation experiment with uninfected A. castellanii and Legionella-infected MM6, suggesting that amoeba-derived effector molecules are involved in this phenomenon. This coculture model allows investigations of molecular and biochemical mechanisms which are responsible for the enhancement of intracellular multiplication of legionellae in monocytic cells after interaction with amoebae.  相似文献   

14.
Genomic DNAs of clinical and environmental isolates of Legionella pneumophila belonging to serogroups 3 and 4 were analyzed by macrorestriction analysis by pulsed-field gel electrophoresis. The restriction enzymes SfiI and NotI allowed easy visual separation of epidemiologically unrelated serogroup 3 strains. Three unrelated serogroup 3 strains that were isolated from different locations were identical by this genome mapping technique. Five unrelated serogroup 4 strains were separable by this technique. The electrophoretic patterns obtained after SfiI or NotI cleavage of the DNA of strains isolated from four patients with hospital-acquired legionellosis were identical to the patterns of strains isolated from the hot water supply systems of the buildings in which the patients were hospitalized. In conclusion, macrorestriction analysis is a valuable tool for epidemiological studies of infections caused by L. pneumophila serogroups 3 and 4.  相似文献   

15.
Survival of Legionella pneumophila in a model hot water distribution system   总被引:3,自引:0,他引:3  
A virulent strain of Legionella pneumophila was inoculated into an enclosed system supplied with unsterilized water from a domestic hot water supply. Growth of bacteria was monitored over 10 weeks. An increase in the number of organisms other than legionellas occurred but few amoebae were observed and none could be cultured. Viable counts of L. pneumophila in the circulation fluid decreased slightly. However, particles of debris which accumulated in the apparatus and which were stained by the indirect fluorescent antibody technique were found to be almost totally composed of L. pneumophila. On dismantling the apparatus Legionella was isolated in moderately high numbers from several different types of surfaces, particularly natural rubber and silicone.  相似文献   

16.
Techniques were developed for genetic characterization of Legionella pneumophila serogroup 1 by using restriction fragment length polymorphism analysis. Allozyme analysis provided an index of the discrimination achieved by restriction fragment length polymorphism. Isolates from human cases of legionellosis were examined by both methods, and their profiles were compared with reference strains of L. pneumophila serogroup 1 obtained from the American Type Culture Collection. Eighteen distinct clones were evident among the isolates examined. Both methods could be used to trace the source of an outbreak of legionellosis caused by L. pneumophila serogroup 1.  相似文献   

17.
The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation.  相似文献   

18.
Techniques were developed for genetic characterization of Legionella pneumophila serogroup 1 by using restriction fragment length polymorphism analysis. Allozyme analysis provided an index of the discrimination achieved by restriction fragment length polymorphism. Isolates from human cases of legionellosis were examined by both methods, and their profiles were compared with reference strains of L. pneumophila serogroup 1 obtained from the American Type Culture Collection. Eighteen distinct clones were evident among the isolates examined. Both methods could be used to trace the source of an outbreak of legionellosis caused by L. pneumophila serogroup 1.  相似文献   

19.
The mathematical model describing the dynamics of the growth of L. pneumophila in aqueous environment in the presence of protozoa has been worked out. The model has demonstrated considerable heterogeneity of the initial population of virulent L. pneumophila strains. The number of bacteria capable of multiplication in Infusoria is no more than 0.1% of the initial population. The time of the generation of the infective agent inside Tetrahymena pyriformis is 2.8 hours.  相似文献   

20.
Amoebae are the natural hosts for Legionella pneumophila and play essential roles in bacterial ecology and infectivity to humans. When L. pneumophila colonizes an aquatic installation, it can persist for years despite repeated treatments with disinfectants. We hypothesized that freshwater amoebae play an important role in bacterial resistance to disinfectants, and in subsequent resuscitation of viable non-culturable (VNC) L. pneumophila that results in re-emergence of the disease-causing strain in the disinfected water source. Our work showed that in the absence of Acanthamoeba polyphaga, seven L. pneumophila strains became non-culturable after treatment by 256 p.p.m. of sodium hypochlorite (NaOCl). In contrast, intracellular L. pneumophila within A. polyphaga was resistant to 1024 p.p.m. of NaOCl. In addition, L. pneumophila-infected A. polyphaga exhibited increased resistance to NaOCl. When chlorine-sterilized water samples were co-cultured with A. polyphaga, the non-culturable L. pneumophila were resuscitated and proliferated robustly within A. polyphaga. Upon treatment by NaOCl, uninfected amoebae differentiated into cysts within 48 h. In contrast, L. pneumophila-infected A. polyphaga failed to differentiate into cysts, and L. pneumophila was never detected in cysts of A. polyphaga. We conclude that amoebic trophozoites protect intracellular L. pneumophila from eradication by NaOCl, and play an essential role in resuscitation of VNC L. pneumophila in NaOCl-disinfected water sources. Intracellular L. pneumophila within trophozoites of A. polyphaga block encystation of the amoebae, and the resistance of both organisms to NaOCl is enhanced. To ensure long-term eradication and complete loss of the VNC state of L. pneumophila, we recommend that Legionella-protozoa co-culture should be an important tool to ensure complete loss of the VNC state of L. pneumophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号