首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osmotic Adjustment and Stomatal Response to Water Deficits in Maize   总被引:1,自引:1,他引:0  
A pot experiment was carried out using five maize {Zea maysL.) cultivars under three soil moisture levels (MPa 0 to –0.05,–0.3 to –0.9 and –1.2 to –1.5) to investigatethe effects of water deficits on osmotic adjustment and stomatalconductance. The degree of leaf rolling and the sugar and nutrientconcentrations in leaf cell sap were measured. Leaf water potential and osmotic potential decreased and stomatalconductance decreased with increasing water deficits. Stomatalconductance correlated positively with leaf water potentialand osmotic potential. Degree of leaf rolling was lower in cultivarswhich maintained higher turgor. Osmotic adjustment of 0.08 to0.43 MPa was found under the lowest soil moisture level in fivecultivars used. Sugar and K were the major osmotic substancesin the maize plant. Sugar, K and Mg concentrations increasedunder water deficit, and correlated negatively with a decreasein osmotic potential. Key words: Zea mays L., leaf water relations, leaf rolling, osmotic adjustment, stomatal conductance, water deficit  相似文献   

2.
Growth of the roots of sugar beet, potato and barley in the field was observed through glass panels and related to changes in soil moisture measured by a neutron probe during 1969–71. The depth of observed root growth was generally related to, but 10–15 cm deeper than, the maximum depth of soil-moisture extraction. On average of three years, sugar beet, potato and barley used water from the top 23, 33 and 45 cm soil respectively by the beginning of June, and from the top 70, 68 and > 100 cm soil by the end of June. Maximum soil drying in each horizon gave an in situ measure of available water capacity, and showed that sugar beet and barley eventually extracted similar amounts of water from each horizon, but potatoes extracted less, especially from below 60 cm. Between 30 and 100 cm deep, the in situ available water capacity (per 10 cm soil) progressively decreased from 16 to 10, 15 to 5 and 16 to 8 mm under sugar beet, potato and barley respectively. The calculated soil-moisture deficit (potential evapotranspiration minus rainfall) and measured soil moisture deficit were not related early in the growing period before the crops established much leaf cover.  相似文献   

3.
Effects of Sodium Chloride on Water Status and Growth of Sugar Beet   总被引:1,自引:0,他引:1  
The effects of sodium chloride on the water status, growth,and physiology of sugar beet subjected to a range of soil waterpotentials were studied under controlled conditions. Sodiumchloride increased plant dry weight and the area, thickness,and succulence of the leaves. It increased the water capacityof the plant, mainly the shoot, but there was no evidence thatit altered the relationships between leaf relative water contentand the leaf water, osmotic, and turgor potentials or changedthe way stomatal conductance and photosynthesis responded todecreasing leaf water potential. The greater leaf expansionin sodium-treated plants is thought to be the consequence ofadjustments made by leaf cells to accommodate changes in ionsand water in a way that minimizes change in water and turgorpotentials. It is also suggested that the greater water capacityof treated plants buffers them against deleterious changes inleaf relative water content and water potential under conditionsof moderate stress.  相似文献   

4.
Effects of sodium fertiliser on growth, water status and yield of sugar beet crops were measured in 1974 and 1975. Sodium increased leaf area index early in the growing period, the water content of the leaves and the final yields of root dry matter and sugar in both years. In 1974, it increased leaf relative water content and diffusive conductance under conditions of moderate soil moisture deficit in August but had no effect in June or September when soil moisture deficits were low. There was also no effect in June 1975 but later, when there was a severe drought, sodium decreased leaf water potential. Further evidence of an interaction between sodium and soil moisture on leaf water status was obtained from a reappraisal of results of field experiments made between 1965 and 1976. Sodium increased sugar yield through at least two different physiological mechanisms; it improved interception of radiation by the crop by increasing leaf area early in the season and it improved the efficiency of leaves under conditions of moderate water stress.  相似文献   

5.
Changes in leaf and canopy water potential of sugar beet growingin soil of decreasing water content depended on soil water potentialand were independent of water flux from the plant when thiswas varied by changing the water vapour content of the air.The calculated hydraulic conductance of the plant increasedas flux increased and decreased as leaf water potential decreasedand as the plant aged. The conductances to water vapour of individualleaves and of the canopy decreased as leaf water potential decreasedand increased with increasing humidity of the air. The lattereffect was independent of changes in leaf water potential. Theconductances were not affected by the rate of evaporation orleaf temperature. The rate of photosynthesis was directly relatedto leaf conductance except in severely stressed, mature leavesin which leaf water potential had a more direct effect on photosynthesis.Stomatal conductances, transpiration, and photosynthesis weregreater in young leaves than mature leaves on the same plantand at the same leaf water potential. These results are discussedin relation to current agricultural irrigation practices usedfor sugar beet.  相似文献   

6.
Nine sugar beet lines were grown in a glasshouse on chernozem soil watered to 35, 50 and 65 % of maximal soil water capacity. After 12 d, plant water potential, net photosynthetic rate, contents of soluble proteins, DNA and RNA, proportion of ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) protein, and carbonic anhydrase activity were measured. As soil moisture decreased, the leaf water potential and net photosynthetic rate decreased. DNA and RNA content and carbonic anhydrase activity decreased under moderate drought, and increased with severe drought. RUBISCO protein proportion did not change significantly under decreased soil moisture, while the total soluble protein content decreased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
With the aim to contribute to elucidation of the role of phytohormones in plant responses to stresses the endogenous contents of abscisic acid (ABA) and cytokinins (CK) were followed in French bean, maize, sugar beet, and tobacco during water stress and subsequent rehydration. The effects of pre-treatments with exogenous ABA or benzyladenine (BA) before imposition of water stress were also evaluated. The content of ABA increased by water stress, and with the exception of bean plants increased content of ABA remained also after rehydration. In all plant species the ABA content was further increased by ABA pre-treatment, but in bean and maize it decreased by BA pre-treatment. The highest total content of CK was observed in bean and the lowest in maize during water stress. In their spectrum, the storage CK were dominant in bean, and inactive CK in tobacco while in sugar beet and maize all groups were present in comparable amounts. In all plant species, the contents of CK increased during water stress and with exception of bean they decreased back after rehydration. ABA pre-treatment further increased contents of CK in water-stressed bean and tobacco. BA pre-treatment increased contents of CK in sugar beet and tobacco after rehydration.  相似文献   

8.
Thermography is a non-destructive method used to monitor pest and disease infestations, as it is related to changes in plant water status. Surface temperature differences of the crop canopy may be an indicator of nematode infestation as the parasitation of the root system reduces evaporation of leaves. To test the potential of high resolution digital thermography to detect Heterodera schachtii infestation, experiments using increasing nematode densities and different sugar beet varieties were conducted. From June to August 2003 the crop canopy temperature was measured with a thermal infrared camera from a helicopter. A significant correlation between canopy temperature and nematode density was observed with the susceptible cultivar Monza whereas the resistant cultivar Paulina did not show any correlation. Mean temperature comparison showed significant differences between the lowest infestation level (500 eggs and larvae/100 ml soil) and the highest infestation level (>1500 eggs and larvae/100 ml soil). At the beginning of the season canopy temperature differences between healthy and nematode infested sugar beets were higher (approximately 1 degree C) compared to later assessment dates when the water supply in the soil was limited. Since low and high nematode infestation could be clearly distinguished with the susceptible cultivar by airborne thermal images, thermography might be a useful tool for monitoring sugar beet fields.  相似文献   

9.
Soil moisture flux to root surface is considered the main determining factor of the transpiration intensity of plants. This assumption is valid not only in optimal plant physiological conditions without any physical barrier for the evaporation from the leaves, but in climatic drought as well, when high usable soil water amount cannot supply the evapo-transpiration intensity of plant. A new algorithm we built up describing the plant adaptation in climatic drought when stoma’s closure and reduction of plant’s potential evapo-transpiration (PET) starts. The adaptation algorithm of Doorenbos et al. (1978) is developed further defining that soil moisture content initiating the stomata’s closure. The critical soil moisture content is varying according to the PET, and drought tolerance of plant. If soil moisture content is less than the critical one, the plant evapo-transpiration (ET) can be highly different in the drought tolerance plant groups. The new drought tolerance algorithm is applied to maize field plots on chernozem soil of the experimental station of the Debrecen University, in East Hungary. Simulated soil water storages are compared to measured ones of a field plot treatment in five consecutive years. The soil moisture content profiles are measured with a BR-150 capacitance probe (Andrén et al. 1991). Differences between measured and simulated soil water storages are not significant in 2003. Simulations indicate low soil water storages in autumn of 2006, and in the first half of 2007 predicting the low maize production realized in 2007. The new plant adaptation algorithm can be used for a climate and soil moisture content sensitive irrigation control as well. The maize production is an illustrative biohydrological example of water flow through the soil-plant-atmosphere continuum.  相似文献   

10.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

11.
Soil moisture and temperature, sowing depth and penetration resistance affect the time and percentage of seedling emergence, which are crucial for the simulation of drought‐limited crop production. The aim of this research was to measure the effect of soil water potential on germination and emergence, shoot and root elongation rates (SER and RER) of two different seed/crop types. Sugar beet and durum wheat seeds were sown into two soils (clay and loam), submitted to five matric potentials (?0.01, ?0.1, ?0.2, ?0.4 and ?0.8 MPa) and incubated at constant temperature (25°C) and humidity. Cumulative count analysis was used to estimate parameters of the distribution of germination or emergence times for each box of beet or wheat seeds and to derive estimates for base potentials (ψb), hydrothermal times (H) and numbers of viable units. In a second experiment, NaCl solution was used to mimic the soil matric potentials to estimate potential RER and SER. Germination of sugar beet was slightly more sensitive to matric potential than durum wheat (ψb of ?1.13 and ?1.23 MPa, respectively). H(g) was longer for sugar beet than for durum wheat (67 vs 47 MPa °Cd). For emergence ψb was similar for both seed types and soils but hydrothermal times (H(e)) were 40 MPa °Cd higher for sugar beet than for wheat. Emergence was about 20 MPa °Cd earlier in loam than in clay. SER measured in soils were similar for both crops and for durum wheat it agreed with those determined in NaCl solution. RER and SER fell with decreasing osmotic potential to approximately 20% of their maximum values (1.03 mm h?1 and 0.57 mm h?1, respectively). Seedling viability decreased with decreasing matric potential and more in clay than in loam soil and more for sugar beet than durum wheat. Seed and soil aggregate size are discussed with respect to the effects of water diffusion and soil–seed contact on germination and emergence modelling.  相似文献   

12.
The emergence of sugar beet seedlings is often slow or irregular and insufficient plants may be established for the crop to yield fully. Treating the seed prior to sowing, such that the subsequent germination percentage is not reduced but germination is more rapid and better synchronised should be beneficial. A series of laboratory experiments was made to investigate seed treatment procedures involving water and various inorganic salt solutions. Many treatment combinations were identified which gave faster germination without decreasing germination percentage and left the seed dry and intact and suitable for sowing with conventional precision drills. No treatment was found which ‘primed’ the sugar beet seed and the term seed ‘advancement’ describes, more accurately, the effects observed. There was little difference in the performance of seeds optimally treated with water or some salt solutions generating an osmotic potential of between about –10 and –20 bars. However, the use of salt solutions, although more complicated, was preferred to water as inadvertent germination during treatment was less likely. The optimum treatment for the one bulk of sugar beet seed studied was, firstly, to wash the seeds for 3.5 h with water, then after air-drying, to moisten them on filter paper dampened with –15 bar (0–34 M) sodium chloride solution for 6 days at 15oC followed by a final wash and air-drying.  相似文献   

13.
Lu  Z; Neumann  P 《Journal of experimental botany》1998,49(329):1945-1952
The possible occurrence of species diversity in mechanisms underlying leaf-growth inhibition by water stress, was investigated in related cereal plants. Water stress was generated by additions of the osmoticum polyethylene glycol 6000 to the root medium. Effects of external water potentials ranging from 0 to -0.6MPa, on early growth parameters of emerging leaves were measured under controlled environment conditions, using pairs of maize, barley or rice genotypes with differing resistance to water stress under field conditions. Water potentials of -0.4 MPa for 24 h, similarly reduced leaf growth, comparative production rates of leaf epidermal cells and cell size in all genotypes. These reductions did not appear to be caused by reductions in the osmotic potential gradients between the expanding leaf cells and their external water source. However, growth inhibition in maize and barley, was accompanied by significant reductions in comparative leaf and cell wall extensibility. Moreover, regression plots revealed good linear correlations (r=0.83** for maize and r=0.77** for barley) between the reductions in leaf growth induced by a series of water potentials and associated reductions in leaf extensibility. In contrast, the reduction in growth of rice leaves, was not accompanied by any significant changes in leaf or cell wall extensibility. Similarly, regression plots revealed poor correlations between leaf growth and leaf extensibility in both paddy and upland rice (r=0.17 and r=0.07, respectively). Thus, despite numerous inter-species similarities, biophysical changes associated with stress-induced leaf growth inhibition in maize and barley, differed from those in rice.Key words: Cell walls, extensibility, water stress, cereal diversity, leaf growth.   相似文献   

14.
In agroecosystems, temporal diversification creates a sequence of short-lived habitats through time. Crop species as well as the diversity of crops grown in sequence might affect soil biodiversity and nutrient cycling processes. In the present study, we focused on a long-term crop rotation established in 2006 in Lower Saxony, Germany on a Luvisol. Winter wheat (WW) and silage maize (SM) were grown in continuous cultivation as well as in rotations. WW rotations span up to six years (including silage maize, sugar beet, winter rape and/or grain pea). Over two years, microbial biomass carbon (MBC) as well as kinetics (Michaelis-Menten Vmax and Km) of extracellular hydrolytic enzymes (β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG) and acid phosphomonoesterase (AP)) were measured in topsoil (0–10 cm depth) three times during the growing season. Continuous wheat increased soil microbial parameters compared to continuous maize as indicated by the higher microbial biomass to soil organic carbon ratio and higher potential enzymes activities involved in the C- and N-cycles (Vmax of BG and NAG). The efficiency of these enzymes was lowest in continuous maize (highest Km of BG and NAG). Maize and sugar beet as preceding crop of WW significantly decreased MBC in the 1st year but not in the 2nd year WW. Sugar beet decreased BG activity as well as its substrate affinity (increased Km). The effect of sugar beet on MBC and enzyme kinetics depended on the preceding crop and lessened with grain pea as the preceding crop. Soil microorganisms in the wheat phase benefited from winter rape as the preceding crop, shown by an increased biomass and efficiency to turn over chitin and peptidoglycan (decreased Km of NAG). Differences between cultivated crops, cropping history and fluctuations within the year in soil microbial biomass and enzyme kinetics are shown.  相似文献   

15.
Noble  R.  Dobrovin-Pennington  A.  Evered  C.E.  Mead  A. 《Plant and Soil》1999,207(1):1-13
Different combinations of peat and chalk or lime sources with differing moisture contents were used to determine how specific physical and chemical properties of the casing soil relate to the growth and water relations of the mushroom. The peat types varied in terms of decomposition and extraction method; the lime addition varied in terms of rate and type (chalk or sugar beet lime). During the colonisation of the casing soil before fruiting, the extension growth rate of mushroom mycelium was most closely correlated (negatively) with the volumetric moisture content of the casing soil. Scanning electron microscopy showed that mycelium growing at a lower casing soil matric potential (Ψm) had a much finer and branched structure than mycelium growing at a higher Ψm. Across all the peat and lime source treatments, a relationship was found between the mean Ψm of the casing soil and mushroom yield, with an optimum Ψm of -7.9 to -9.4 kPa. Mushrooms are produced in ‘flushes’ at about 8-day intervals and during the development of each flush of mushrooms, there was a significant decrease in casing soil Ψm . This decrease (to below -40 kPa) was greatest in the second flush, which was the highest yielding. There were no relationships between mushroom yield and casing soil osmotic potential Ψπ within the range -93 to -154 kPa or any of the other chemical properties and water and air holding characteristics of the casing soils which were determined. Across different casing soil treatments, mushroom dry matter content was negatively correlated with mushroom yield and positively correlated with mushroom tissue osmotic potential. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Using a soil debris isolation method, populations of Rhizoctonia solani were monitored over a 4 -yr period in four fields which were initially cropped to sugar beet and in which four areas of Rhizoctonia crown rot diseased beets (DA) and four areas of apparently healthy beets (AH) had been selected and precisely located. Soil from these areas was assayed during the subsequent crops, which included sugar beet, tomato, cucumber, maize and soybean. No significant differences in colony counts were found between the soils in DA and AH on any of 30 sampling dates. R. solani population counts were, in general, quite low, except under sugar beet and following tomato harvest. Areas of diseased beet and high R. solani soil populations that developed in subsequent sugar beet crops did not necessarily coincide with the previously selected diseased areas. High R. solani populations developed from parasitic activity on sugar beet or saprophytically on tomato crop residues. Of the other crops, both maize and soybean may have slightly increased the low R. solani residual populations in soil. The monitoring of R. solani populations in the season prior to, and during the early season of sugar beet cropping did not provide a basis for forecasting disease in fields or sites within fields. The initiation of disease patches in these sugar beet fields was therefore governed by factors other than inoculum density.  相似文献   

17.
玉米早期根系构型及其生理特性对土壤水分的响应   总被引:7,自引:0,他引:7  
为了探明玉米早期根系结构及其对土壤水分的生理响应,揭示玉米幼苗的抗旱机理,以蠡玉18为材料,采用盆栽试验,设置轻度胁迫(LS)、中度胁迫(MS)、重度胁迫(SS)和正常供水(CK)4个水分处理,系统研究从播种开始持续水分处理对夏玉米苗期根系形态结构及活力、保护酶系统及生理调节物质的影响。结果表明:随着水分胁迫程度的加剧,玉米根长、根表面积、根体积和根干重等各形态指标较CK下降幅度逐渐增大,不同水分胁迫使夏玉米苗期根系结构存在差异。轻度和中度胁迫显著增加了细根(0.05—0.25 mm)根长和根表面积比例,重度水分胁迫显著降低粗根(0.50 mm)根长与根表面积比例。玉米苗期根冠比、根系活力和丙二醛(MDA)含量随水分胁迫程度的增强而上升,随着胁迫时间的延长,根冠比逐渐降低。根系可溶性蛋白含量随土壤水分含量的下降而下降,MS、SS处理较CK显著降低(P0.05)。夏玉米根系中SOD对水分胁迫较CAT、POD更敏感,轻度水分胁迫下主要依赖CAT、中度水分胁迫下主要依赖POD、重度水分胁迫下主要依赖SOD来降低氧化伤害;且重度胁迫下,随着胁迫时间的延长保护酶活性下降。苗期玉米通过增加根冠比、增强根系活力和不同保护酶活性及降低可溶性蛋白等渗透调节物质来协同减少水分胁迫的危害。  相似文献   

18.
Atriplex nummularia exhibits excellent adaptability to environments with high salinity and low water availability. Accordingly, many studies have been conducted to identify the tolerance of the plant. We cultivated Atriplex in sodic saline soil under conditions of water stress in Northeast Brazil. The purpose of the study was to evaluate the growth characteristics and production of leaves, stems and roots of Atriplex under these conditions in order to identify anatomical changes in vesicular cells in leaf epidermis as well as to assess the osmotic potential of the soil solution and the leaves. The experiment was performed in a greenhouse where Atriplex was cultivated for 134 days in pots with sodic saline soil. The treatments comprised four moisture levels (35%, 55%, 75% and 95% of field capacity – FC). The height, diameter and dry mass of leaf, stem and root exhibited their highest values at levels of soil moisture that were 75% and 95% of FC. The high yields of dry biomass indicate the potential use of this halophyte for restoration of salt-affected soils. The vesicular cells were influenced by the soil moisture. The osmotic potential can serve as a good index for evaluating plant responses to water stress and salinity.  相似文献   

19.
Co-existence of salt and drought tolerance in Triticeae   总被引:1,自引:0,他引:1  
Farooq S  Azam F 《Hereditas》2001,135(2-3):205-210
Cell membrane stability (CMS) technique was used to screen for drought tolerance, salt tolerant accessions of three Aegilops species, Ae. tauschii, Ae. cylindrica, Ae. geniculata and two hexaploid wheat (Tricitum aestivum L.) cultivars comprising salt tolerant LU-26 and drought tolerant Chakwal-86. The objectives were to see how valid it is for a salt tolerant plant to be drought tolerant as well and to identify the character(s) that may contribute to drought tolerance. Three moisture levels equal to 100, 50 and 25% saturation capacity of the soil were used for plant cultivation. Injury percentage (IP) based on in-vitro desiccation induced by polyethylene glycol (PEG) in leaf tissue was measured through the conductivity of the electrolyte leakage. Injury percentage decreased in all the test material with decrease in soil moisture contents. Ae. cylindrica exhibited minimum injury at 100% soil moisture level followed by Ae. tauschii and Ae. geniculata while drought tolerant wheat cultivars exhibited the maximum. The wheat cultivar Chakwal-86 has been developed for dry areas, with low soil moisture levels, and high water potential enhances the injury percentage. Aegilops cylindrica is a salt tolerant species and can thus tolerate water deficit conditions created due to low osmotic potential. Potassium appeared to play an important role in drought tolerance which was evident from high K+ contents and low K+ leakage from Aegilops cylindrica and drought tolerant wheat cultivar Chakwal-86. It was inferred from the study that salt tolerant species might prove drought tolerant in the areas where water deficit prevails due to the ability to create low intracellular osmotic potentials.  相似文献   

20.
王定勇  牟树森 《生态学报》1999,19(1):140-144
按酸沉降危害程度的差异及不同功能区,进行了大气、植物、土壤汞的同步调查采样分析。结果表明,大气汞对土壤-植物系统汞累积的影响非常明显,土壤、植物含汞量均随大气汞浓度的升高而升高,土壤-植物系统汞累积与大气汞浓度有显著的相关(相关系数分别为r植=0.882**,n=53;r土=0.741**,n=52)。调查还发现,当大气汞浓度大于30ng/m3时,土壤-植物系统汞累积较为明显,因此把30ng(Hg)/m3作为本地区大气汞对土壤-植物系统造成二次污染的临界浓度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号