首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

2.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

3.
Both activities of ribulose bisphosphate carboxylase/oxygenase are dependent on carbamylation by CO2 of a specific lysyl epsilon-amino group (Lys-191 of the enzyme from Rhodospirillum rubrum). To examine the stringency of the requirement for this lysyl side chain, Lys-191 was converted to an aminoethylcysteinyl residue (net replacement of a gamma-methylene group by a sulfur atom) by a combination of site-directed mutagenesis and subsequent chemical modification. The purified Cys-191 mutant was totally devoid of both carboxylase and oxygenase activities. However, this mutant protein exhibited tight-binding of the transition-state analogue, 2-carboxyarabinitol bisphosphate, a property heretofore ascribed solely to the carbamylated form of the carboxylase. Treatment of the mutant protein with ethylene imine restored catalytic activity to 4-7% of the wild-type level. The carboxylase:oxygenase activity ratio of the aminoethylated protein was unperturbed relative to that of wild-type enzyme.  相似文献   

4.
The half-saturation constants for binding of the bivalent cations (Mg2+, Ni2+, Co2+, Fe2+ and Mn2+) to ribulose bisphosphate carboxylase/oxygenase from Glycine max and Rhodospirillum rubrum were measured. The values obtained were dependent on the enzyme and the cation present, but were the same for both oxygenase and carboxylase activities. Ribulose bisphosphate rather than its cation complex was the true substrate. The kinetic parameters Vmax.(CO2), Vmax.(O2), Km(CO2), Km(O2), and K1(O2) were determined for both enzymes and each cation activator. The evolutionary and mechanistic implications of these data are discussed.  相似文献   

5.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

6.
Diverse approaches that include site-directed mutagenesis have indicated a catalytic role of Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To determine whether Lys-329 is required for the initial enolization of ribulose bisphosphate or for some subsequent step in the overall reaction pathway, the competence of position 329 mutant proteins (devoid of carboxylase activity) in catalyzing exchange of solvent protons with the C-3 proton of substrate has now been examined. Irrespective of the amino acid substitution for Lys-329, the mutant protein retains 2-6% of the wild-type activity in the proton exchange reaction. The complete stability of ribulose bisphosphate during the enolization catalyzed by mutant protein suggests that the major effect of Lys-329 is to facilitate the addition of gaseous substrates (CO2 or O2) to the enediol intermediate. The exchange reaction requires Mg2+, is CO2-dependent, and is inhibited by the transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate. A mutant protein in which Lys-191, the site for carbamylation by CO2 in an obligatory activation step, is replaced by a cysteinyl residue totally lacks proton exchange activity. Barely detectable exchange activity (approximately 0.2% of wild-type) is displayed by the Lys-166----Cys mutant protein, consistent with the previously implicated role of Lys-166 in the deprotonation of ribulose bisphosphate. Retention of exchange activity by the Glu-48----Gln mutant protein, which is slightly active in overall carboxylation, demonstrates that active site Glu-48, like Lys-329, exerts its major effect at some step subsequent to the initial enolization.  相似文献   

7.
G J Lee  B A McFadden 《Biochemistry》1992,31(8):2304-2308
Site-directed mutagenesis was used to change Ser376 in the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans to Cys, Thr, or Ala. When expressed in Escherichia coli and purified, the mutant enzymes exhibited carboxylase activities that were reduced by 99% or more with respect to the activity of the wild-type enzyme. The Km values for ribulose bisphosphate at pH 8.0, 30 degrees C, were elevated from 46 microM for wild-type enzyme to 287, 978, and 81 microM for mutants in which Cys, Thr, or Ala, respectively, replaced Ser376. The Cys and Thr variants were almost devoid of oxygenase activity whereas the Ala variant had 16% as much oxygenase as wild-type enzyme, suggesting that this mutation had greatly elevated the oxygenase:carboxylase ratio.  相似文献   

8.
The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  相似文献   

9.
Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.  相似文献   

10.
The Michaelis constants of soya-bean ribulose bisphosphate carboxylase for CO2 in the carboxylation reaction and for O2 in the oxygenation reaction depend on the nature of the bivalent cation present. In the presence of Mg2+ the Km for bicarbonate is 2.48 mM, and the Km for O2 is 37% (gas-phase concentration). With Mn2+ the values decrease to 0.85 mM and 1.7% respectively. For the carboxylation reaction Vmax. was 1.7 mumol/min per mg of protein with Mg2+ but only 0.29 mumol/min per mg of protein with Mn2+. For the oxygenation reaction, Vmax. values were 0.61 and 0.29 mumol/min per mg of protein respectively with Mg2+ and Mn2+.  相似文献   

11.
Oxygen isotope effects on the ribulosebisphosphate oxygenase reaction   总被引:1,自引:0,他引:1  
The oxygen isotope effect at the substrate O2 on the oxygenase reaction of ribulose bisphosphate carboxylase/oxygenase from spinach is pH and metal dependent. The pH dependence between pH 7.4 and 8.9 is different with Mg2+ (steady decrease in this isotope effect from 1.036 to 1.030) and Mn2+ (minimum isotope effect of 1.028 at pH 8.0). Deuteration of the substrate ([3-2H]ribulose bisphosphate) has no influence on the isotope effect. The results are interpreted as a direct participation of the metal ion in the oxygen-sensitive step, i.e. carbon-oxygen bond formation and the stabilization of the intermediates. In the overall reaction oxygen addition is a major rate-limiting step, and the observed isotope effect is probably close to the intrinsic oxygen isotope effect of the reaction. The basic mechanisms for carboxylation and oxygenation of ribulose bisphosphate appear to be the same.  相似文献   

12.
Pyruvate is a minor product of the reaction catalyzed by ribulosebisphosphate carboxylase/oxygenase from spinach leaves. Labeled pyruvate was detected, in addition to the major labeled product, 3-phosphoglycerate, when 14CO2 was the substrate. Pyruvate production was also measured spectrophotometrically in the presence of lactate dehydrogenase and NADH. The Km for CO2 of the pyruvate-producing activity was 12.5 microM, similar to the CO2 affinity of the 3-phosphoglycerate-producing activity. No pyruvate was detected by the coupled assay when ribulose 1,5-bisphosphate was replaced by 3-phosphoglycerate or when the carboxylase was inhibited by the reaction-intermediate analog, 2'-carboxyarabinitol 1,5-bisphosphate. Therefore, pyruvate was not being produced from 3-phosphoglycerate by contaminant enzymes. The ratio of pyruvate produced to ribulose bisphosphate consumed at 25 degrees C was 0.7%, and this ratio was not altered by varying pH or CO2 concentration or by substituting Mn2+ for Mg2+ as the catalytically essential metal. The ratio increased with increasing temperature. Ribulose-bisphosphate carboxylases from the cyanobacterium Synechococcus PCC 6301 and the bacterium Rhodospirillum rubrum also catalyzed pyruvate formation and to the same extent as the spinach enzyme. When the reaction was carried out in 2H2O, the spinach carboxylase increased the proportion of its product partitioned to pyruvate to 2.2%. These observations provide evidence that the C-2 carbanion form of 3-phosphoglycerate is an intermediate in the catalytic sequence of ribulose-bisphosphate carboxylase. Pyruvate is formed by beta elimination of a phosphate ion from a small portion of this intermediate.  相似文献   

13.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

14.
The epsilon-amino group of Lys-166 of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase was postulated as the essential base which initiates catalysis by abstracting the proton at C-3 of ribulose 1,5-bisphosphate (Hartman, F. C., Soper, T. S., Niyogi, S. K., Mural, R. J., Foote, R. S., Mitra, S., Lee, E. H., Machanoff, R., and Larimer, F. W. (1987) J. Biol. Chem. 262, 3496-3501). To scrutinize this possibility, the site-directed Gly-166 mutant, totally devoid of ribulosebisphosphate carboxylase activity, was examined for its ability to catalyze each of three partial reactions. When carbamylated at Lys-191 (i.e. activated with CO2 and Mg2+), wild-type enzyme catalyzed the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate, the six-carbon reaction intermediate of the carboxylase reaction (Pierce, J., Andrews, T. J., and Lorimer, G. H. (1986a) J. Biol. Chem. 261, 10248-10256). Likewise, when carbamylated at Lys-191, the Gly-166 mutant also catalyzed the hydrolysis of this reaction intermediate. The carbamylated wild type catalyzed the enolization of ribulose 1,5-bisphosphate as indicated by the transfer of 3H radioactivity from [3-3H]ribulose, 1,5-bisphosphate to the medium. However, even when carbamylated at Lys-191, the mutant protein did not catalyze the enolization of ribulose 1,5-bisphosphate. Additionally, unlike the decarbamylated wild-type enzyme, which catalyzed the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate in the absence of Mg2+, the mutant protein was inactive in this partial reaction. These properties exclude the epsilon-amino group of Lys-166 as an obligatory participant in the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate. In contrast, these properties are consistent with the epsilon-amino group of Lys-166 functioning as an acid-base catalyst in the enolization of ribulose 1,5-bisphosphate (when the enzyme is carbamylated) and in the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (when the enzyme is decarbamylated). Alternatively, Lys-166 may stabilize the transition states of these two partial reactions.  相似文献   

15.
Site-specific mutagenesis of a cloned gene for ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was used to examine the functional significance of carbamate activation. Lysine 191, the residue involved in carbamate formation, was replaced with a glutamate in order to mimic the anionic nature of the carbamate. The resulting enzyme was capable of binding the six-carbon transition state analog carboxyarabinitol bisphosphate, but completely lacked catalytic activity. In contrast to the wild-type enzyme, carboxyarabinitol bisphosphate binding was not stabilized by divalent metal and CO2. These observations are consistent with a proposed role for the carbamate in binding the metal required for catalysis.  相似文献   

16.
Bicarbonate stabilization of ribulose 1,5-diphosphate carboxylase.   总被引:13,自引:0,他引:13  
W A Laing  W L Ogren  R H Hageman 《Biochemistry》1975,14(10):2269-2275
The carboxylase and oxygenase activities of purified soybean ribulose 1,5-di-P carboxylase (EC4.1.1.39) were unstable when reactions were initiated with enzyme. Time courses of carboxylase and oxygenase activities were curvilinear, approximating hyperbolas. Double reciprocal plots of amount of CO2 incorporated and P-glycolate produced vs. time were constructed to determine a constant representing the half-time of initial enzyme activity, K. K increased with increasing bicarbonate concentration but was independent of O2 tensions between 0.21 and 5 atm. When time courses of carboxylase and oxygenase activities were determined simultaneously, K was identical for both activities. Linear time courses were obtained py preincubation of the enzyme for 10 min in the absence of bicarbonate or by adding 46 mM MgCl2 to the reaction mixture. The observed bicarbonate-dependent decline in ribulose 1,5-di-P carboxylase activity with time is the probable cause for the anomalously high Km(CO2) values previously reported for this enzyme. In the experiments reported here, the apparent Km(CO2) at pH 8.5 increased from 6 muM CO2 at zero time to 78 muM CO2 at 10 min. The corresponding bicarbonate Km values ar 1;3 and 17 mM, respectively, The interaction between bicarbonate and enzyme may be important in the light activation of photosynthetic CO2 fixation in vivo.  相似文献   

17.
The complexation of ribulosebiphosphate carboxylase with CO2, Mg2+, and carboxyarabinitol bisphosphate (CABP) to produce the quaternary enzyme-carbamate-Mg2+-CABP complex closely mimics the formation of the catalytically competent enzyme-carbamate-Mg2+-3-keto-CABP form during enzymatic catalysis. Quaternary complexes were prepared with various metals (Mg2+, Cd2+, Mn2+, Co2+, and Ni2+) and with specifically 13C-enriched ligands. 31P and 13C NMR studies of these complexes demonstrate that the activator CO2 site (carbamate site), the metal binding site, and the substrate binding site are contiguous. It follows that both the carboxylase and oxygenase activities of this bifunctional enzyme are influenced by the structures of the catalytic and activation sites.  相似文献   

18.
Crystalline tobacco (Nicotiana tabacum L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) was prepared using a procedure which protected the enzyme from hydrolysis by endogenous proteases. Leaves were extracted in a buffered medium containing casein, leupeptin, and high concentrations of MgSO4 and NaHCO3. After filtration through ion-exchange resin to remove contaminants, the enzyme was concentrated by precipitation with polyethylene glycol and crystal formation was induced by low-salt dialysis. The crystalline enzyme had a measured specific activity of 1.7 mumol CO2 mg protein-1 min-1, and about 93% of the enzyme could be activated with Mg2+ and CO2. Crystalline enzyme prepared in the absence of casein exhibited an activity which was only one-third of this rate and only about 70% of the enzyme could be activated with Mg2+ and CO2. Casein-extracted enzyme was resolved into distinct bands corresponding to the large (55,000) and small (14,000) subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit of enzyme prepared according to the latter procedure was found to be composed of five different polypeptides of slightly decreasing molecular weight. Only about one-third of the large subunits were of the 55,000 molecular weight type. No differences between the two preparations were observed in the Km (CO2) and apparent Km (ribulose bisphosphate).  相似文献   

19.
Purification of ribulose-1,5-bisphosphate carboxylase from primary leaves of Phaseolus vulgaris var. Red Kidney with ammonium sulfate precipitation, ion exchange chromatography, and gel filtration resulted in the complete loss of detectable oxygenase activity and the retention of a low velocity and a high K(m) form of both the carboxylase and oxygenase. The polyethylene glycol-6000-purified ribulose-1, 5-bisphosphate oxygenase displayed a broad pH optimum (7.9-9.4) and a high K(m) for O(2) and ribulose 1,5-bisphosphate (0.90 mm and 0.25 mm, respectively). Initiation of the oxygenase reaction with protein rather than ribulose 1,5-bisphosphate resulted in reduced activity. The enzymes prepared by the two purification procedures were electrophoretically different.Etiolated primary leaf tissue exhibited low rates of both carboxylase and oxygenase. Similar developmental kinetic activity was observed for both reactions during greening. Photosynthetic (14)CO(2) fixation was inhibited 95% by 100% N(2) gas during the first 24 hours of greening, but the inhibition was rapidly overcome by 48 to 72 hours of light exposure.  相似文献   

20.
The small subunit (B) of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase from Aphanothece halophytica is absolutely required for the catalysis, but depletion of subunit B does not significantly affect the formation of the quaternary complex-[enzyme.activator CO2.Mg.carboxyarabinitol bisphosphate] in the catalytic core. The inhibition of RuBP carboxylase activity by the reaction of the epsilon-amino group of a lysine in the RuBP-binding site with pyridoxal 5-P is the same whether subunit B is added to the catalytic core before or after the inactivating reaction. The function of subunit B is not related to the substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号