首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为了研究中胚叶叉头-1(MFH-1)基因在骨骼形成和细胞分化中的作用,利用基因重组、杂交瘤技术制作MFH-1单克隆抗体, 利用蛋白质印迹和RNA印迹分析观察了骨成形蛋白-2 (BMP-2)诱导小鼠肌胚细胞C2C12表达MFH-1、产生碱性磷酸酶和骨钙蛋白.小鼠肌胚细胞C2C12低水平地表达内源性MFH-1蛋白以及导入小鼠MFH-1 cDNA的人膀胱癌细胞HTB9也表达小鼠MFH-1蛋白,这种蛋白质定位于细胞核中.用BMP-2处理后, MFH-1蛋白和mRNA在C2C12细胞中的表达显著地增加.用反义MFH-1序列转染小鼠肌胚细胞C2C12可降低内源性MFH-1水平, BMP-2不能诱导导入反义MFH-1序列的肌胚细胞C2C12产生MFH-1蛋白,也不能诱导碱性磷酸酶(ALP)活性和骨钙蛋白量的增加.结果表明, BMP-2诱导的MFH-1蛋白在调节肌胚细胞C2C12向成骨细胞分化方面起关键作用.  相似文献   

2.
Decorin, a small leucine-rich proteoglycan, plays an important role in the regulation of cell growth. Our recent study has shown that immobilized decorin in the collagen matrix sequesters myostatin into the extracellular matrix and prevents its inhibitory action to myoblast proliferation in vitro. However, it still remains unclear whether free decorin could affect the proliferation and differentiation of myogenic cells by regulating myostatin activity. In the present study, we generated stable clonal C2C12 myoblasts that were over-expressing decorin, and showed that decorin over-expressing cells had an increased rate of proliferation as compared to control cells. Decorin over-expressing cells formed multi-giant hypertrophic myotubes with an elongated morphology and larger size as compared to control cells, although the initiation of differentiation in decorin over-expressing cells was somewhat delayed as compared to control cells. Western blot analysis demonstrated that MyoD expression in decorin over-expressing cells was lower than that in control cells until 12 h after induction to differentiate. At 48-h differentiation, the expressions of MyoD, p21 and myogenin were dramatically increased in cells that over-expressed decorin. Furthermore, we revealed that over-expression of decorin suppressed the activity of myostatin endogenously synthesized in C2C12 myoblasts and attenuated the signaling of exogenous myostatin. Consistent with these results, knock-down of decorin impairs C2C12 myoblast growth by increasing the sensitivity to exogenous myostatin. These results clearly show that decorin enhances the proliferation and differentiation of C2C12 myoblasts through suppressing myostatin activity.  相似文献   

3.
Craniosynostosis (CS), the premature ossification of cranial sutures, is attributed to increased osteogenic potential of resident osteoblasts, yet the contribution of the surrounding extracellular matrix (ECM) on osteogenic differentiation is unclear. The osteoblast-secreted ECM provides binding sites for cellular adhesion and regulates the transport and signaling of osteoinductive factors secreted by the underlying dura mater. The binding affinity of each osteoinductive factor for the ECM may amplify or mute its relative effect, thus contributing to the rate of suture fusion. The purpose of this paper was to examine the role of ECM composition derived from calvarial osteoblasts on protein binding and its resultant effect on cell phenotype. We hypothesized that potent osteoinductive proteins present during sutural fusion (e.g., bone morphogenetic protein-2 (BMP-2) and transforming growth factor beta-1 (TGF-β1)) would exhibit distinct differences in binding when exposed to ECMs generated by human calvarial osteoblasts from unaffected control individuals (CI) or CS patients. Decellularized ECMs produced by osteoblasts from CI or CS patients were incubated in the presence of BMP-2 or TGF-β1, and the affinity of each protein was analyzed. The contribution of ECM composition to protein binding was interrogated by enzymatically modulating proteoglycan content within the ECM. BMP-2 had a similar binding affinity for each ECM, while TGF-β1 had a greater affinity for ECMs produced by osteoblasts from CI compared to CS patients. Enzymatic treatment of ECMs reduced protein binding. CS osteoblasts cultured on enzymatically-treated ECMs secreted by osteoblasts from CI patients in the presence of BMP-2 exhibited impaired osteogenic differentiation compared to cells on untreated ECMs. These data demonstrate the importance of protein binding to cell-secreted ECMs and confirm that protein-ECM interactions have an important role in directing osteoblastic differentiation of calvarial osteoblasts.  相似文献   

4.
Skeletal muscle regeneration is a complex process in which many agents are involved. When skeletal muscle suffers an injury, quiescent resident myoblasts called satellite cells are activated to proliferate, migrate, and finally differentiate. This whole process occurs in the presence of growth factors, the extracellular matrix (ECM), and infiltrating macrophages. We have shown previously that different proteoglycans, either present at the plasma membrane or the ECM, are involved in the differentiation process by regulating growth factor activity. In this article, we evaluated the role of glycosaminoglycans (GAGs) in myoblast proliferation and migration, using C2C12, a satellite cell-derived cell line. A synergic stimulatory effect on myoblast proliferation was observed with hepatocyte growth factor (HGF) and fibroblast growth factor type 2 (FGF-2), which was dependent on cell sulfation. The GAG dermatan sulfate (DS) enhanced HGF/FGF-2-dependent proliferation at 1-10 ng/ml. However, decorin, a proteoglycan containing DS, was unable to reproduce this enhanced proliferative effect. On the other hand, HGF strongly increased myoblast migration. The HGF-dependent migratory process required the presence of sulfated proteoglycans/GAGs present on the myoblast surface, as inhibition of both cell sulfation, and heparitinase (Hase) and chondroitinase ABC (Ch(abc)) treatment of myoblasts, resulted in a very strong inhibition of cell migration. Among the GAGs analyzed, DS most increased HGF-dependent myoblast migration. Taken together, these findings showed that DS is an enhancer of growth factor-dependent proliferation and migration, two critical processes involved in skeletal muscle formation.  相似文献   

5.
Bone morphogenetic proteins (BMP) play a pivotal role in growth and differentiation of osteoblastic lineage cells. BMPs are potent stimulators of bone formation in various animal models. To understand the mechanism of BMP action in bone cells, we have investigated the effects of overexpression of the BMP-2 gene on proliferation and differentiation of UMR-106 rat osteosarcoma cells. A stable UMR-106 cell line overexpressing the BMP-2 gene was established by transfection of cells using a mammalian expression vector harboring human BMP-2 cDNA followed by G418 selection. After introduction of the BMP-2 gene, UMR-106 cells appeared more spindle-shaped in morphology compared to the predominantly cuboidal appearance of the parental cells. Overexpression of BMP-2 markedly inhibited proliferation as measured by cell counting and [3H]thymidine incorporation assays. Extracellular matrix (ECM) derived from cells overexpressing BMP-2 exhibited a less supportive effect on proliferation of UMR cells than did ECM derived from parental cells. Furthermore, cell-cell communication through gap junctions was reduced more than 50% as determined by nondisruptive fluorescent dye transfer assays. Overexpression of BMP-2 significantly stimulated expression of osteocalcin and alkaline phosphatase genes, indicating its role in osteoblastic differentiation. There was little effect on osteopontin gene expression.  相似文献   

6.
7.
《The Journal of cell biology》1994,127(6):1755-1766
The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.  相似文献   

8.
9.
Various osteoblastic cell lines were examined for the relationship between the presence of cell-surface transforming growth factor (TGF)-β receptors and the synthesis of matrix proteins with their responsiveness to TGF-β. Treatment with TGF-β1 inhibited proliferation and stimulated proteoglycan and fibronectin synthesis in MC3T3-E1 and MG 63 cells. The major proteoglycans synthesized by these cells were decorin and biglycan, and TGF-β1 markedly stimulated the synthesis of decorin in MC3T3-E1 and of biglycan in MG 63 cells. SaOS 2 and UMR 106 cells synthesized barely detectable amounts of decorin or biglycan, and TGF-β1 did not stimulate the synthesis of these proteoglycans. In SaOS 2 cells, however, TGF-β1 enhanced fibronectin synthesis. TGF-β1 did not show any of these effects in UMR 106 cells. Receptor cross-linking studies revealed that only MC3T3-E1 and MG 63 cells had both types I and II signal-transducing receptors for TGF-β in addition to betaglycan. SaOS 2 cells possessed type I but no type II receptor on the cell surface. In contrast, SaOS 2 as well as MC3T3-E1 and MG 63 cells expressed type II receptor mRNA by Northern blot analysis, and cell lysates contained type II receptor by Western blot analysis. Thus, it appears that type II receptor present in SaOS 2 cells is not able to bind TGF-β1 under these conditions. UMR 106 cells with no response to TGF-β1 had neither of the signal-transducing receptors by any of the analyses. These observations using clonal osteoblastic cell lines demonstrate that the ability of osteoblastic cells to synthesize bone matrix proteoglycans is associated with the responsiveness of these cells to TGF-β1, that the responsiveness of osteoblastic cells to TGF-β1 in cell proliferation and proteoglycan synthesis correlates with the presence of both types I and II receptors, and that the effect of TGF-β1 on fibronectin synthesis can develop with little binding of TGF-β1 to type II receptor if type I receptor is present. It is suggested that the combination of cell-surface receptors for TGF-β determines the responsiveness of osteoblastic cells to TGF-β and that changes in cell-surface TGF-β receptors may play a role in the regulation of matrix protein synthesis and bone formation in osteoblasts. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
13.
14.
Bone morphogenetic protein-2 (BMP-2), a member of transforming growth factor-β superfamily, inhibits the terminal differentiation of C2C12 myoblasts and changes their differentiation pathway into cells expressing osteoblast phenotypes such as alkaline phosphatase (ALP) activity and osteocalcin production (Katagiriet al.,1994,J. Cell Biol.127, 1755–1766). Two type I receptors for BMP-2 (BMPR-IA and BMPR-IB) have been cloned, but the role of the respective receptors in signal transduction is not clear. In the present study, we examined the signal transduction of BMP-2 in C2C12 cells using constitutively activated mutant BMPR-IA and BMPR-IB. C2C12 cells expressed BMPR-IA and BMPR-II mRNAs, but not BMPR-IB mRNA at detectable levels in Northern blotting. When mutated BMPR-IA and BMPR-IB were transiently transfected into C2C12 cells, both BMPR-IA and BMPR-IB similarly induced ALP activity in the absence of BMP-2. We also established subclonal cell lines of C2C12 cells by stably transfecting mutated BMPR-IB. When the mutated BMPR-IB-transfected cells were cultured in medium with low serum (differentiation medium) without BMP-2, the cells differentiated into ALP-positive mononuclear cells and not into myosin heavy chain-positive myotubes. These mutated BMPR-IB-transfected cells expressed ALP activity and osteocalcin mRNA in a time-dependent manner, but neither muscle creatine kinase nor myogenin mRNAs. These results indicate that the mutated BMP-2 type I receptors can constitutively transduce BMP-2 signals in the absence of the ligand in C2C12 cells.  相似文献   

15.
16.
An important role for JNK* and p38 has recently been discovered in the differentiating effect of bone morphogenetic protein 2 (BMP-2) on osteoblastic cells. In this study, we investigated the molecular mechanism by which BMP-2 activates JNK and p38 in MC3T3-E1 osteoblastic cells. Activation of JNK and p38 induced by BMP-2 was blocked by the protein kinase C/protein kinase D (PKC/PKD) inhibitor Go6976 but not by the related compound, Go6983, a selective inhibitor of conventional PKCs. Associated with this inhibitory effect of Go6976, BMP-2 induced a selective and a dose-dependent Ser916 phosphorylation/activation of PKD, which was also blocked by Go6976. In contrast to the recently described PKC-dependent molecular mechanism involved in activation of PKD by G protein-coupled receptor agonists, BMP-2 did not induce a phosphorylation of PKD on Ser744/748. To further document an implication of PKD in activation of JNK and p38 induced by BMP-2, we constructed MC3T3-E1 cells stably expressing PKD antisense oligonucleotide (AS-PKD). In AS-PKD clones having low PKD levels, activation of JNK and p38 by BMP-2, but not of Smad1/5, was markedly impaired compared with empty vector transfected (V-PKD) cells. Analysis of osteoblastic cell differentiation in AS-PKD compared with V-PKD cells showed that mRNA and protein expressions of alkaline phosphatase and osteocalcin induced by BMP-2 were markedly reduced in AS-PKD. In conclusion, results presented in this study indicate that BMP-2 can induce activation of PKD in osteoblastic cells by a PKC-independent mechanism and that this kinase is involved in activation of JNK and p38 induced by BMP-2. Thus, this pathway, in addition to Smads, appears to be essential for the effect of BMP-2 on osteoblastic cell differentiation.  相似文献   

17.
The in vitro effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on osteogenic and myogenic differentiation was examined in two clonal cell lines of rat osteoblast-like cells at different differentiation stages, ROB-C26 (C26) and ROB-C20 (C20). The C26 is a potential osteoblast precursor cell line that is also capable of differentiating into muscle cells and adipocytes; the C20 is a more differentiated osteoblastic cell line. Proliferation was stimulated by rhBMP-2 in C26 cells, but inhibited in C20 cells. rhBMP-2 greatly increased alkaline phosphate (ALP) activity in C26 cells, but not in C20 cells. The steady-state level of ALP mRNA was also increased by rhBMP-2 in C26 cells, but not in C20 cells. Production of 3',5'-cAMP in response to parathyroid hormone (PTH) was dose-dependently enhanced by adding rhBMP-2 in both C26 and C20 cells, though the stimulatory effect was much greater in the former. There was neither basal expression of osteocalcin mRNA nor its protein synthesis in C26 cells, but they were strikingly induced by rhBMP-2 in the presence of 1 alpha,25-dihydroxyvitamin D3. rhBMP-2 induced no appreciable changes in procollagen mRNA levels of type I and type III in the two cell lines. Differentiation of C26 cells into myotubes was greatly inhibited by adding rhBMP-2. The inhibitory effect of rhBMP-2 on myogenic differentiation was also observed in clonal rat skeletal myoblasts (L6). Like BMP-2, TGF-beta 1 inhibited myogenic differentiation. However, unlike BMP-2, TGF-beta 1 decreased ALP activity in both C26 and C20 cells. TGF-beta 1 induced neither PTH responsiveness nor osteocalcin production in C26 cells, but it increased PTH responsiveness in C20 cells. These results clearly indicate that rhBMP-2 is involved, at least in vitro, not only in inducing differentiation of osteoblast precursor cells into more mature osteoblast-like cells, but also in inhibiting myogenic differentiation.  相似文献   

18.
The small GTPase M-Ras is highly expressed in the central nervous system and plays essential roles in neuronal differentiation. However, its other cellular and physiological functions remain to be elucidated. Here, we clarify the novel functions of M-Ras in osteogenesis. M-Ras was prominently expressed in developing mouse bones particularly in osteoblasts and hypertrophic chondrocytes. Its expression was elevated in C3H/10T1/2 (10T1/2) mesenchymal cells and in MC3T3-E1 preosteoblasts during differentiation into osteoblasts. Treatment of C2C12 skeletal muscle myoblasts with bone morphogenetic protein-2 (BMP-2) to bring about transdifferentiation into osteoblasts also induced M-Ras mRNA and protein expression. Moreover, the BMP-2 treatment activated the M-Ras protein. Stable expression of the constitutively active M-Ras(G22V) in 10T1/2 cells facilitated osteoblast differentiation. M-Ras(G22V) also induced transdifferentiation of C2C12 cells into osteoblasts. In contrast, knockdown of endogenous M-Ras by RNAi interfered with osteoblast differentiation in 10T1/2 and MC3T3-E1 cells. Osteoblast differentiation in M-Ras(G22V)-expressing C2C12 cells was inhibited by treatment with inhibitors of p38 MAP kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not by inhibitors of MAPK and ERK kinase (MEK) or phosphatidylinositol 3-kinase. These results imply that M-Ras, induced and activated by BMP-2 signaling, participates in the osteoblastic determination, differentiation, and transdifferentiation under p38 MAPK and JNK regulation.  相似文献   

19.
20.
The effects of Osteogenic Protein-1 (OP-1, BMP-7) on the differentiation of the pluripotent mesenchymal cell line, C2C12, were examined. OP-1 at 50 ng/ml partially inhibited myotube formation in C2C12 cells, while OP-1 at 200 ng/ml completely inhibited myotube formation and induced the formation of cells displaying osteoblastic morphology. High concentrations of OP-1 elevated the alkaline phosphatase (AP) activity dramatically, both as a function of time and OP-1 concentration. Osteocalcin (OC) mRNA expression was detected as early as 8 days in OP-1-treated cultures and subsequently increased considerably. Expression of bone sialoprotein (BSP) mRNA was low in control cultures and stimulated by OP-1. Collagen type I mRNA expression was enhanced by OP-1 during the early days in culture, but gradually decreased thereafter. MyoD mRNA expression, high in control cultures, was suppressed by OP-1 in a dose- and time-dependent manner. OP-1 enhanced ActR-I mRNA expression and significantly elevated the mRNA expressions of BMP-1, BMP-4, BMP-5, GDF-6, and GDF-8. The present results indicate that OP-1 is a potent inducer of C2C12 differentiation into osteoblastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号