首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

2.
Thioredoxin reductase (TrxR, EC 1.6.4.5) of Deinococcus radiophilus was purified by steps of sonication, ammonium sulfate fractionation, 2′5′ ADP Sepharose 4B affinity chromatography, and Sephadex G-100 gel filtration. The purified TrxR, which was active with both NADPH and NADH, gave a 368 U/mg protein of specific activity with 478-fold purification and 18% recovery from the cell-free extract. An isoelectric point of the purified enzymes was ca. 4.5. The molecular weights of the purified TrxR estimated by PAGE and gel filtration were about 63.1 and 72.2 kDa, respectively. The molecular mass of a TrxR subunit is 37 kDa. This suggests that TrxR definitely belongs to low molecular weight TrxR (L-TrxR). The Km and Vmax of TrxR for NADPH are 12.5 μM and 25 μM/min, whereas those for NADH are 30.2 μM and 192 μM/min. The Km and Vmax for 5, 5′-dithio-bis-2-nitrobenzoic acid (DTNB, a substituted substrate for thioredoxin) are 463 μM and 756 μM/min, respectively. The presence of FAD in TrxR was confirmed with the absorbance peaks at 385 and 460 nm. The purified TrxR was quite stable from pH 3 to 9, and was thermo-stable up to 70°C. TrxR activity was drastically reduced (ca. 70%) by Cu2+, Zn2+, Hg2+, and Cd2+, but moderately reduced (ca. 50%) by Ag+. A significant inhibition of TrxR by N-ethylmaleimide suggests an occurrence of cysteine at its active sites. Amino acid sequences at the N-terminus of purified TrxR are H2N-Ser-Glu-Gln-Ala-Gln-Met-Tyr-Asp-Val-Ile-Ile-Val-Gly-Gly-Gly-Pro-Ala-Gly-Leu-Thr-Ala-COOH. These sequences show high similarity with TrxRs reported in Archaea, such as Methanosarcina mazei, Archaeoglobus fulgidus etc.  相似文献   

3.
Formaldehyde activating enzyme (Fae) was first discovered in methylotrophic bacteria, where it is involved in the oxidation of methanol to CO2 and in formaldehyde detoxification. The 18 kDa protein catalyzes the condensation of formaldehyde with tetrahydromethanopterin (H4MPT) to methylene-H4MPT. We describe here that Fae is also present and functional in the methanogenic archaeon Methanosarcina barkeri. The faeA homologue in the genome of M. barkeri was heterologously expressed in Escherichia coli and the overproduced purified protein shown to actively catalyze the condensation reaction: apparent V max=13 U/mg protein (1 U=μmol/min); apparent Km for H4MPT=30 μM; apparent Km for formaldehyde=0.1 mM. By Western blot analysis the concentration of Fae in cell extracts of M. barkeri was determined to be in the order of 0.1% of the soluble cell proteins. Besides the faeA gene the genome of M. barkeri harbors a second gene, faeB-hpsB, which is shown to code for a 42 kDa protein with both Fae activity (3.6 U/mg) and hexulose-6-phosphate synthase (Hps) activity (4.4 U/mg). The results support the recent proposal that in methanogenic archaea Fae and Hps could have a function in ribose phosphate synthesis.  相似文献   

4.
Aryl alcohol oxidase (AAO) produced by dye decolorizing bacteria Sphingobacterium sp. ATM, was purified 22.63 fold to a specific activity of 21.75 μmol/min/mg protein using anion exchange and size exclusion chromatography. The molecular weight of the purified AAO was found to be 71 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and confirmed by zymography of AAO using L-dopa. The enzyme showed substrate specificity towards veratryl alcohol, followed by n-propanol. The optimum pH and temperature of purified AAO were found to be 3.0 and 40°C, respectively. The K m and V max of AAO was 1.1615 mM and 3.13 mM/min when veratryl alcohol was used as substrate. Sodium azide showed maximum inhibition while ethylenediamine tetra acetic acid (EDTA), L-cysteine and dithiothreitol showed slight inhibition. Metal ions also showed slight inhibition. HPLC analysis confirmed the degradation of Direct Red 5B. The metabolite obtained after decolorization of Direct Red 5B was characterized as 3 diazenyl 7 [-(phenyl carbonyl) amino] naphthalene-2-sulfonic acid using GC-MS analysis.  相似文献   

5.
A haloalkalitolerant xylanase-producing Bacillus pumilus strain, GESF1 was isolated from an experimental salt farm of CSMCRI. Birch wood xylan and xylose induced maximum xylanase production with considerable activity seen in wheat straw and no activity at all with caboxymethyl cellulose (CMC). A three step purification yielded 21.21-fold purification with a specific activity of 112.42 U/mg protein (unit expressed as μmole of xylose released per min). Xylanase produced showed an optimum activity at pH 8.0, with approximately 50 and 30% relative activity at a pH 6.0 and 10.0, respectively. The temperature optimum was 40°C and kinetic properties such as Km and Vmax were 5.3 mg/mL and 0.42 μmol/min/mL (6593.4 μmol/min/mg protein). Xylanase activity (160∼ 120%) was considerably enhanced in 2.5 to 7.5% NaCl with 87 and 73% retention of activity in 10 and 15% of NaCl. Enzyme activity was enhanced by Ca2+, Mn2+, Mg2+, and Na+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Cu2+, Cd2+, and Zn2+. Organic reagents such as β-Mercaptoethanol enhanced xylanase activity whereas EDTA strongly inhibited its activity. Xylanase, purified from the Bacillus pumilus strain, GESF1 could have potential biotechnological applications.  相似文献   

6.
An extracellular xylanase from the fermented broth of Bacillus cereus BSA1 was purified and characterized. The enzyme was purified to 3.43 fold through ammonium sulphate precipitation, DEAE cellulose chromatography and followed by gel filtration through Sephadex-G-100 column. The molecular mass of the purified xylanse was about 33 kDa. The enzyme was an endoxylanase as it initially degraded xylan to xylooligomers. The purified enzyme showed optimum activity at 55°C and at pH 7.0 and remained reasonably stable in a wide range of pH (5.0–8.0) and temperature (40–65°C). The K m and V max values were found to be 8.2 mg/ml and 181.8 μmol/(min mg), respectively. The enzyme had no apparent requirement of cofactors, and its activity was strongly inhibited by Cu2+, Hg2+. It was also a salt tolerant enzyme and stable upto 2.5 M of NaCl and retained its 85% activity at 3.0 M. For stability and substrate binding, the enzyme needed hydrophobic interaction that revealed when most surfactants inhibited xylanase activity. Since the enzyme was active over wide range of pH, temperature and remained active in higher salt concentration, it could find potential uses in biobleaching process in paper industries.  相似文献   

7.
Treatment of Aspergillus niveus with 30 μg tunicamycin/ml did not interfere with α-glucosidase production, secretion, or its catalytic properties. Fully- and under-glycosylated forms of the enzyme had similar molecular masses, ~56 kDa. Moreover, the absence of N-glycans did not affect either pH optimum (6.0) or temperature optimum (65°C). The Km and Vmax values of under- and fully-glycosylated forms of α-glucosidase were similar when assessed for hydrolysis of starch (~0.6 mg/ml, ~350 μmol glucose per min per ml), maltose (~0.54 μmol, ~330 μmol glucose per min per ml) and p-nitrophenyl-α-d-glucopyranoside (~0.54 μmol, ~8.28 μmol p-nitrophenol per min per ml). However, the under-glycosylated form was sensitive to high temperatures probably because, in addition to stabilizing the protein conformation, glycosylation may also prevent unfolded or partially folded proteins from aggregating. Binding assays clearly showed that the under-glycosylated protein did not bind to concanavalin A but has conserve its jacalin-binding property, suggesting that only O-glycans might be intact on the tunicamycin treated form of the enzyme.  相似文献   

8.
6-Phosphogluconate dehydrogenase (6PG) was purified from rat small intestine with 36% yield and a specific activity of 15 U/mg. On SDS/PAGE, one band with a mass of 52 kDa was found. On native PAGE three protein and two activity bands were observed. The pH optimum was 7.35. Using Arrhenius plots, Ea, ΔH, Q10 and Tm for 6PGD were found to be 7.52 kcal/mol, 6.90 kcal/mol, 1.49 and 49.4°C, respectively. The enzyme obeyed “Rapid Equilibrium Random Bi Bi” kinetic model with Km values of 595 ± 213 μM for 6PG and 53.03±1.99 μM for NADP. 1/Vm versus 1/6PG and 1/NADP plots gave a Vm value of 8.91±1.92 U/mg protein. NADPH is the competitive inhibitor with a Ki of 31.91±1.31 μM. The relatively small Ki for the 6PGD:NADPH complex indicates the importance of NADPH in the regulation of the pentose phosphate pathway through G6PD and 6PGD.  相似文献   

9.
Aspergillus flavus produced approximately 50 U/mL of amylolytic activity when grown in liquid medium with raw low-grade tapioca starch as substrate. Electrophoretic analysis of the culture filtrate showed the presence of only one amylolytic enzyme, identified as an α-amylase as evidenced by (i) rapid loss of color in iodine-stained starch and (ii) production of a mixture of glucose, maltose, maltotriose and maltotetraose as starch digestion products. The enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography and was found to be homogeneous on sodium dodecyl sulfate— polyacrylamide gel electrophoresis. The purified enzyme had a molar mass of 52.5±2.5 kDa with an isoelectric point at pH 3.5. The enzyme was found to have maximum activity at pH 6.0 and was stable in a pH range from 5.0 to 8.5. The optimum temperature for the enzyme was 55°C and it was stable for 1 h up to 50°C. TheK m andV for gelatinized tapioca starch were 0.5 g/L and 108.67 μmol reducing sugars per mg protein per min, respectively.  相似文献   

10.
The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex™ G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45°C, respectively. The enzyme was activated by Cu2+ (at a concentration of 1.0 mM) and Mn2+ and inhibited by Hg2+, Fe2+, Fe3+, Zn2+, and Co2+. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1–10-phenanthroline, and iodoacetic acid. The K m and V max values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 μmol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.  相似文献   

11.
Rhodococcus erythropolis AJ270 metabolizes a wide range of nitriles via the two-step nitrile hydratase/amidase pathway. In this study, an amidase gene from R. erythropolis AJ270 was cloned and expressed in Escherichia coli BL21 (DE3). The activity reached the highest level of 22.04 U/ml in a complex auto-inducing medium using a simplified process of fermentation operation. The recombinant amidase was purified to more than 95% from the crude lysate using Ni-NTA affinity chromatography and Superose S10-300 gel filtration. The V max and K m values of the purified enzyme with acetamide (50 mM) were 6.89 μmol/min/mg protein and 4.12 mM, respectively, which are similar to those of the enzyme from the wild-type cell. The enzyme converted racemic α-substituted amides, O-benzylated β-hydroxy amides, and N-benzylated β-amino amides to the corresponding (S)-acids with remarkably high enantioselectivity. The ionic liquid [BMIm][PF6] (1-butyl-3-methylimidazolium hexafluorophosphate) enhanced the activity by 1.5-fold compared with water. The adequate expression of the enzyme and excellent enantioselectivity of the recombinant amidase to a broad spectrum of amides suggest that the enzyme has prospective industrial-scale practical applications in pharmaceutical chemistry.  相似文献   

12.
Rumen bacterium Pseudobutyrivibrio ruminis strain k3 utilized over 90 % sucrose added to the growth medium as a sole carbon source. Zymographic studies of the bacterial cell extract revealed the presence of a single enzyme involved in sucrose digestion. Thin layer chromatography showed fructose and glucose-1-phosphate (Glc1P) as end products of the digestion of sucrose by identified enzyme. The activity of the enzyme depended on the presence of inorganic phosphate and was the highest at the concentration of phosphate 56 mmol/L. The enzyme was identified as the sucrose phosphorylase (EC 2.4.1.7) of molar mass ≈54 kDa and maximum activity at pH 6.0 and 45 °C. The calculated Michaelis constant (K m) for Glc1P formation and release of fructose by partially purified enzyme were 4.4 and 8.56 mmol/L while the maximum velocities of the reaction (v lim) were 1.19 and 0.64 μmol/L per mg protein per min, respectively.  相似文献   

13.
Solid-state fermentation conditions for cellulases production by a newly isolated Penicillium chrysogenum QML-2 were investigated using statistical methods. At first, significant variables for cellulases production including (NH4)2SO4, initial pH and inoculum size were screened by using Plackett-Burman Design. Then the optimal regions of the significant variables were investigated by using the method of steepest ascent. Finally, central composite design and response surface analysis were adopted to determine the optimal values of the significant variables and investigate the combined effects of each variable’s pair on cellulases production. The results showed that the optimal ranges of (NH4)2SO4 concentration, initial pH and inoculum size for three types of cellulases activities were 1.97–2.15 g, pH 4.32–4.41 and 13.3–13.7% (v/w), respectively. Using the mixture of corn stover powder and wheat bran (CSP/WB, 1/1) as carbon source, the optimization resulted in 370.15, 101.76 and 321.56 U/g for maximal endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. Compared with maximum values of cellulases activities (endoglucanase activity 85.21 U/g, filter paper activity 16.62 U/g and β-glucosidase activity 67.68 U/g) obtained under unoptimized conditions, the optimization resulted in 3.34, 5.12 and 3.75 folds improvement for endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. For chitosan hydrolysis, the crude cellulases had the optimal temperature of 55°C, pH of 4.4 and exhibited Michaelis constant (K m) value of 8.34 mg/ml and maximum velocity (V max) of 2.21 μmol glucosamine/min by 1 ml of the crude cellulases.  相似文献   

14.
A 22-kDa xylanase encoded by a cloned gene (XCs16) of Cellulomonas was purified to homogeneity with an overall yield of 44%. It is a basic protein with a pI of 8.1 and has a K m and V max of 3 mg/ml and 1150 μmoles/mg/min, respectively, for oat spelt xylan at 55°C and pH 5.8. Homologous xylanase from Cellulomonas could be identified with antibodies raised against purified xylanase encoded by XCs16. The enzyme from Cellulomonas also exhibited identical temperature and pH optimum and had a molecular weight of 23 kDa. Modification of tryptophan residue of purified xylanase resulted in the loss of xylanase activity. This loss could be reversed by the addition of substrate, indicating the involvement of tryptophan residue in the catalytic site. Received: 12 April 1996 / Accepted: 28 October 1996  相似文献   

15.

Background

Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology.

Results

A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592?±?6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30?kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants K m and V max were 70 and 56???M and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects.

Conclusions

The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications.  相似文献   

16.
Joo GJ 《Biotechnology letters》2005,27(19):1483-1486
An extracellular chitinase from Streptomyces halstedii AJ-7, a broad spectrum antifungal biocontrol agent, was characterized and purified. The apparent molecular weight of the purified protein was 55 kDa, Km value and Vmax of the protein for colloidal chitin were 3.2 mg ml−1 and 118 μmol h−1, respectively. The growth and chitinase activity of S. halstedii AJ−7 were enhanced by adding of 0.1% killed mycelium of Fusarium oxysporium in a medium containing 0.2% colloidal chitin.  相似文献   

17.
Lipoxygenases (LOXs) constitute a family of lipid-peroxidizing enzymes that catalyze the oxidation of unsaturated fatty acid containing a (1Z,4Z)-pentadiene structural unit, leading to formation of conjugated (Z,E)-hydroperoxydienoic acid. LOXs are known to be widely distributed in plants and animals. Recently, several microbial LOXs were reported to be involved in the production of hydroperoxy fatty acids. Among the microorganisms that produce hydroxy fatty acids, Pseudomonas aeruginosa PR3 is known to convert linoleic acid to trihydroxy fatty acid, which suggests the involvement of a LOX enzyme. Based on these reports, we identified a novel thermostable LOX from P. aeruginosa PR3 strain. The protein was purified 34.3-fold with a recovery rate of 5.14%. The Km and Vmax values of the purified enzyme were 3.57 mM and 0.73 μmol/min//mg, respectively. Heat stability of the purified enzyme was unexpectedly high with an LD50 of 90 min at 80°C, although P. aeruginosa PR3 is known as a mesophilic bacterium. Substrate specificity of the purified enzyme was restricted only to unsaturated fatty acids carrying a (1Z,4Z)-pentadiene unit.  相似文献   

18.
Glutathione S-transferase (GST) from oat seedlings was purified by ammonium sulfate precipitation and glutathione (GSH) affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of two major protein subunits with molecular masses of 29 and 31 kDa, respectively. Isoelectric focusing revealed a major band with pI of 3.43 and a minor band with pI of 7.42. Kinetic analysis with respect to 1-chloro-2,4-dinitrobenzene (CDNB) as substrate revealed a K m of 1.18 mM and V max of 0.94 mol/min and a specific activity of 17.96 mol/min/mg. Inhibition studies indicated that oat GST is strongly inhibited by chlorophyllin, hemin, and anthocyanin and only weakly by bilirubin and biliverdin.  相似文献   

19.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

20.
Phytase activity in rabbit cecal bacteria   总被引:1,自引:0,他引:1  
The presence of phytase activity was demonstrated in 26 strains of rabbit cecal bacteria. In 25 strains a low phytase activity, 0.10–0.62 μmol phosphate released per min per mg protein, was found. High activity (2.61 μmol/min per mg protein) was found in the strain PP2 identified as Enterococcus hirae. Phytase activity was cell-associated, being higher in the cell extract than in the cell walls. Extracellular phytase activity and cell-associated phosphatase activity were not detected. Phytase activity was optimal around pH 5.0, which is below the physiological cecal pH range. The K m determined using the Lineweaver-Burk plot was 0.19 μmol/mL. Cations Fe3+, Cu2+ and Zn2+ at 0.5 mmol/L decreased phytase activity in sonicated cells of E. hirae by 99.4, 90.7 and 96.5 %, respectively. In contrast, Mg2+ increased activity by 11.0 %. Characteristics of E. hirae phytase (pH optimum, K m, cation sensitivity) were similar to those of other bacterial phytases reported in the literature. Other bacteria with a high phytase activity may be present in the rabbit cecum but remain to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号