首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sodium nitroprusside, nitroglycerin, sodium azide and hydroxylamine increased guanylate cyclase activity in particulate and/or soluble preparations from various tissues. While sodium nitroprusside increased guanylate cyclase activity in most of the preparations examined, the effects of sodium azide, hydroxylamine and nitroglycerin were tissue specific. Nitroglycerin and hydroxylamine were also less potent. Neither the protein activator factor nor catalase which is required for sodium azide effects altered the stimulatory effect of sodium nitroprusside. In the presence of sodium azide, sodium nitroprusside or hydroxylamine, magnesium ion was as effective as manganese ion as a sole cation cofactor for guanylate cyclase. With soluble guanylate cyclase from rat liver and bovine tracheal smooth muscle the concentrations of sodium nitroprusside that gave half-maximal stimulation with Mn2+ were 0.1 mM and 0.01 mM, respectively. Effective concentrations were slightly less with Mg2+ as a sole cation cofactor. The ability of these agents to increase cyclic GMP levels in intact tissues is probably due to their effects on guanylate cyclase activity. While the precise mechanism of guanylate cyclase activation by these agents is not known, activation may be due to the formation of nitric oxide or another reactive material since nitric oxide also increased guanylate cyclase activity.  相似文献   

2.
Maxi-circles and mini-circles in kinetoplast DNA from trypanosoma cruzi   总被引:6,自引:0,他引:6  
Glyceryl trinitrate specifically required cysteine, whereas NaNO2 at concentrations less than 10 mM required one of several thiols or ascorbate, to activate soluble guanylate cyclase from bovine coronary artery. However, guanylate cyclase activation by nitroprusside or nitric oxide did not require the addition of thiols or ascorbate. Whereas various thiols enhanced activation by nitroprusside, none of the thiols tested enhanced activation by nitric oxide. S-Nitrosocysteine, which is formed when cysteine reacts with either NO-2 or nitric oxide, was a potent activator of guanylate cyclase. Similarly, micromolar concentrations of the S-nitroso derivatives of penicillamine, GSH and dithiothreitol, prepared by reacting the thiol with nitric oxide, activated guanylate cyclase. Guanylate cyclase activation by S-nitrosothiols resembled that by nitric oxide and nitroprusside in that activation was inhibited by methemoglobin, ferricyanide and methylene blue. Similarly, guanylate cyclase activation by glyceryl trinitrae plus cysteine, and by NaNO2 plus either a thiol or ascorbate, was inhibited by methemoglobin, ferricyanide and methylene blue. These data suggest that the activation of guanylate cyclase by each of the compounds tested may occur through a common mechanism, perhaps involving nitric oxide. Moreover, these findings suggest that S-nitrosothiols could act as intermediates in the activation of guanylate cyclase by glyceryl trinitrate, NaNO2 and possibly nitroprusside.  相似文献   

3.
Highly purified rat lung soluble guanylate cyclase was activated with nitric oxide or sodium nitroprusside and the degree of activation varied with incubation conditions. With Mg2+ as the action cofactor, about 2- to 8-fold activation was observed with nitric oxide or sodium nitroprusside alone. Markedly enhanced activation (20-40 fold) was observed when 1 muM hemin added to the enzyme prior to exposure to the activating agent. The activation with hemin and sodium nitroprusside was prevented in a dose-dependent manner by sodium cyanide. The level activation was also increased by the addition of 1 mM dithiothreitol, but unlike hemin which had no effect on basal enzyme activity, dithiothreitol led to a considerable increase in basal activity. Activated guanylate cyclase decayed to basal activity within one hour at 2 degrees C and the enzyme could be reactivated upon re-exposure to nitroprusside or nitric oxide. Under basal conditions, Michaelis-Menten kinetics were observed, with a Km for GTP of 140 muM with Mg2+ cofactor. Following activation with nitroprusside or nitric oxide, curvilinear Eadie-Hofstee transformations of kinetic data were observed, with Km's of 22 MuM and 100 MuM for Mg-GTP. When optimal activation (15-40 fold) was induced by the addition of hemin and nitroprusside, multiple Km's were also seen with Mg-GTP and the high affinity form was predominant (22 MuM). Similar curvilinear Eadie-Hofstee transformations were observed with Mn2+ as the cation cofactor. These data suggest that multiple GTP catalytic sites are present in activated guanylate cyclase, or alternatively, multiple populations of enzyme exist.  相似文献   

4.
Glyceryl trinitrate specifically required cysteine, whereas NaNO2 at concentrations less than 10 mM required one of several thiols or ascorbate, to activate soluble guanylate cyclase from bovine coronary artery. However, guanylate cyclase activation by nitroprusside or nitric oxide did not require the addition of thiols or ascorbate. Whereas various thiols enhanced activation by nitropruside, none of the thiols tested enhanced activation by nitric oxide. S-Nitrosocysteine, which is formed when cysteine reacts with either NO2? or nitric oxide, was a potent activator of guanylate cyclase. Similarly, micromolar concentrations of the S-nitroso derivatives of penicillamine, GSH and dithiothreitol, prepared by reacting the thiol with nitric oxide, activated guanylate cyclase. Guanylate cyclase activation by S-nitrosothiols resembled that by nitric oxide and nitroprusside in that activation was inhibited by methemoglobin, ferricyanide and methylene blue. Similarly, guanylate cyclase activation by glyceryl trinitrate plus cysteine, and by NaNO2 plus either a thiol or ascorbate, was inhibited by methemoglobin, ferricyanide and methylene blue. These data suggest that the activation of guanylate cyclase by each of the compounds tested may occur through a common mechanism, perhaps involving nitric oxide. Moreover, these findings suggest that S-nitrosothiols could act as intermediates in the activation of guanylate cyclase by glyceryl trinitrate, NaNO2 and possibly  相似文献   

5.
Sodium nitroprusside is a vasodilator and an inhibitor of platelet activation. It is thought that these effects are mediated by the spontaneous release of nitric oxide and stimulation of cytosolic guanylate cyclase. We have found that sodium nitroprusside (5-200 microM) greatly increased a cytosolic ADP-ribosyltransferase that ADP-ribosylates a soluble 39-kDa protein. This activity causes the mono-ADP-ribosylation of the 39-kDa protein, since digestion with snake venom phosphodiesterase releases 5'-AMP. This enzyme is present in platelets, brain, heart, intestine, liver, and lung. The effect of sodium nitroprusside is not related to stimulation of soluble guanylate cyclase and the production of cyclic GMP because cyclic GMP, dibutyryl cyclic GMP, and 8-bromo-cyclic GMP are ineffective. 3-Morpholinosydnonimine (commonly known as SIN-1) (20-1000 micrograms/ml), another compound that acts through the spontaneous formation of nitric oxide as does sodium nitroprusside, also stimulates ADP-ribosylation of the 39-kDa protein. Hemoglobin, which binds nitric oxide, inhibits sodium nitroprusside's activation of the cytosolic ADP-ribosyltransferase. These studies demonstrate a novel action of nitric oxide related to the activation of an endogenous ADP-ribosyltransferase. The physiological role of this ADP-ribosylation needs further exploration.  相似文献   

6.
Bone resorption by osteoclasts is modified by agents that affect cyclic guanosine monophosphate (cGMP), but their relative physiological roles, and what components of the process are present in osteoclasts or require accessory cells such as osteoblasts, are unclear. We studied cGMP regulation in avian osteoclasts, and in particular the roles of nitric oxide and natriuretic peptides, to clarify the mechanisms involved. C-type natriuretic peptide drives a membrane guanylate cyclase, and increased cGMP production in mixed bone cells. However, C-type natriuretic peptide did not increase cGMP in purified osteoclasts. By contrast, osteoclasts did produce cGMP in response to nitric oxide (NO) generators, sodium nitroprusside or 1-hydroxy-2-oxo-3,3-bis(3-aminoethyl)-1-triazene. These findings indicate that C-type natriuretic peptide and NO modulate cGMP in different types of bone cells. The activity of the osteoclast centers on HCI secretion that dissolves bone mineral, and both NO generators and hydrolysis-resistant cGMP analogues reduced bone degradation, while cGMP antagonists increased activity. NO synthase agonists did not affect activity, arguing against autocrine NO production. Osteoclasts express NO-activated guanylate cyclase and cGMP-dependent protein kinase (G-kinase). G-kinase reduced membrane HCI transport activity in a concentration-dependent manner, and phosphorylated a 60-kD osteoclast membrane protein, which immunoprecipitation showed is not an H+-ATPase subunit. We conclude that cGMP is a negative regulator of osteoclast activity. cGMP is produced in response to NO made by other cells, but not in response to C-type natriuretic peptide. G-kinase modulates osteoclast membrane HCI transport via intermediate protein(s) and may mediate cGMP effects in osteoclasts.  相似文献   

7.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

8.
(6R)-5,6,7,8-Tetrahydro-L-biopterin (R-THBP) is a cofactor not only for aromatic amino acid hydroxylases in mammalian tissues but also for nitric oxide synthase (NOS) induced by endotoxins or cytokines in some kinds of cells. Recently it has been reported that nitric oxide (NO) has biological activity in endothelium and in brain as well. NO activates soluble guanylate cyclase (sGC). Superoxide reacts with NO easily and shortens the half-life of NO actions. We found, in a study using rat cerebellar cytosol fraction, that R-THBP itself did not directly activate sGC, but activated sGC at concentrations ranging from 0.1 to 10 microM only under NO generating conditions of activated NOS and in the presence of sodium nitroprusside. In addition, R-THBP (1 microM) did not alter the NOS activity, which was determined by L-citrulline formation. These results suggest that R-THBP may regulate sGC activity associated with NO formation in the central nervous system.  相似文献   

9.
J A Cherner  G Singh  L Naik 《Life sciences》1990,47(7):669-677
The present study examined the effect of atrial natriuretic factor (ANF) on cGMP generation by dispersed chief cells from guinea pig stomach. ANF caused a rapid dose-dependent increase in cGMP, a 7-fold increase in cGMP caused by 1 microM ANF, with or without 3-isobutyl-1-methylxanthine present. Methylene blue reduced cGMP in response to nitroprusside but not ANF. Guanylate cyclase activity of a chief cell membrane fraction doubled in response to ANF, but was not affected by nitroprusside. ANF had no effect on guanylate cyclase activity of the soluble fraction of lysed chief cells. Dose-response curves for whole cell cGMP production and membrane guanylate cyclase activity in response to ANF were closely related. These data indicate that ANF increases chief cell cGMP production by activating particulate guanylate cyclase, providing functional evidence that chief cells possess surface membrane receptors for ANF.  相似文献   

10.
The localization of guanylate cyclase activity was cytochemically studied in heart tissue from guinea pig and pigeon. The method, based on a lead precipitation technique with GPPNHP as the substrate, was tested by quantitative biochemical analysis. The data obtained showed that in heart homogenates GPPNHP is an acceptable substrate for guanylate cyclase. The guanylate cyclase activity of glutaraldehyde prefixed heart tissue was also measured in the presence of 2 mM lead nitrate, in 30% of the untreated control hearts. The residual guanylate cyclase responded to the addition of sodium nitroprusside with a 7-fold increase in its activity. Furthermore, the guanylate cyclase requirement for Mn2+ ions was so changed by this activator that Mg2+ was as active as Mn2+. In heart muscle cells of guinea pigs and pigeons the plasma membrane of the sarcolemma and the junctional sarcoplasmic reticulum are the precipitation sites of the reaction product. In guinea pig hearts the T-tubule membranes were likewise covered with precipitates. Sodium nitroprusside stimulation of guanylate cyclase activity was indicated by increased precipitation and by shortening of the incubation time.  相似文献   

11.
Carbon monoxide induces delayed neurological and neuropathological alterations, including memory loss and cognitive impairment. The bases for the delay remain unknown. Activation of soluble guanylate cyclase by nitric oxide modulates some forms of learning and memory. Carbon monoxide binds to soluble guanylate cyclase, activating it but interfering with its activation by nitric oxide. The aim of this work was to assess whether exposure of rats to carbon monoxide alters the activity of soluble guanylate cyclase or its modulation by nitric oxide in cerebellum or cerebral cortex. Rats exposed chronically or acutely to carbon monoxide were killed 24 h or 7 days later. Acute carbon monoxide exposure decreased cyclic guanosine monophosphate (cGMP) content and reduced activation of soluble guanylate cyclase by nitric oxide. Cortex was more sensitive than cerebellum to chronic exposure, which reduced activation of soluble guanylate cyclase by nitric oxide in cortex. In cerebellum, chronic exposure induced delayed impairment of soluble guanylate cyclase activation by nitric oxide. Acute exposure effects were also stronger at 7 days than at 24 h after exposure. This delayed impaired modulation of soluble guanylate cyclase by nitric oxide may contribute to delayed memory loss and cognitive impairment in humans exposed to carbon monoxide.  相似文献   

12.
The effects of alpha-rat atrial natriuretic peptide (alpha-rANP) and sodium nitroprusside on the activity of rat lung particulate guanylate cyclase were examined. The particulate guanylate cyclase in partially purified rat lung membranes was stimulated by both alpha-rANP and nitroprusside. The effects of alpha-rANP and nitroprusside were, however, not additive. Diamide and N-ethylmaleimide almost completely abolished the nitroprusside-mediated stimulation, while they had only moderate effects on the alpha-rANP-mediated stimulation of the enzyme activity. ATP potentiated the enzyme stimulation by alpha-rANP, whereas it had no effect on the nitroprusside-mediated stimulation. These findings suggest that the stimulation of lung particulate guanylate cyclase activity by alpha-rANP and nitroprusside is mediated by different mechanisms.  相似文献   

13.
R Busse  A Mülsch 《FEBS letters》1990,265(1-2):133-136
We investigated whether calmodulin mediates the stimulating effect of Ca2+ on nitric oxide synthase in the cytosol of porcine aortic endothelial cells. Nitric oxide was quantified by activation of a purified soluble guanylate cyclase. The Ca2(+)-sensitivity of nitric oxide synthase was lost after anion exchange chromatography of the endothelial cytosol and could only be reconstituted by addition of calmodulin or heat-denatured endothelial cytosol. The Ca2(+)-dependent activation of nitric oxide synthase in the cytosol was inhibited by the calmodulin-binding peptides/proteins melittin, mastoparan, and calcineurin (IC50 450, 350 and 60 nM, respectively), but not by the calmodulin antagonist, calmidazolium. In contrast, Ca2(+)-calmodulin-reconstituted nitric oxide synthase was inhibited with similar potency by melittin and calmidazolium. The results suggest that the Ca2(+)-dependent activation of nitric oxide synthase in endothelial cells is mediated by calmodulin.  相似文献   

14.
The principal objective of this study was to test the hypothesis that nitroprusside relaxes vascular smooth muscle via the reactive intermediate, nitric oxide (NO), and that the biologic action of NO is associated with the activation of guanylate cyclase. Nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and NO elicit concentration-dependent relaxation of precontraced helical strips of bovine coronary artery. Nitroprusside, MNNG and NO also markedly activate soluble guanylate cyclase from bovine coronary arterial smooth muscle and, thereby, stimulate the formation of cyclic GMP. Three heme proteins, hemoglobin, methemoglobin and myoglobin, and the oxidant, methylene blue, abolish the coronary arterial relaxation elicited by NO. Similarly, these heme proteins, methylene blue and another oxidant, ferricyanide, markedly inhibit the activation of coronary arterial guanylate cyclase by NO, nitroprusside and MNNG. The following findings support the view that certain nitroso-containing compounds liberate NO in tissue:heme proteins, which cannot permeate cells, inhibit coronary arterial relaxation elicited by NO, but not by nitroprusside or MNNG; the vital stain, methylene blue, inhibits relaxation by NO, nitroprusside and MNNG; heme proteins and oxidants inhibit guanylate cyclase activation by NO, nitroprusside and MNNG in cell-free mixtures. The findings that inhibitors of NO-induced relaxation of coronary artery also inhibit coronary arterial guanylate cyclase activation suggest that cyclic GMP formation may be associated with coronary arterial smooth muscle relaxation.  相似文献   

15.
The 105 000 X g gupernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and cyclic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

16.
The formation of nitric oxide (NO) by an L-arginine:NO synthase and its stimulation of the soluble guanylate cyclase was studied in rat whole adrenal and bovine cortex and medulla cytosol. In the presence of L-arginine, the stimulation of soluble guanylate cyclase was accompanied by the formation of citrulline and NO2-, formed from NO. The NO synthase was NADPH- and Ca(2+)-dependent and was inhibited by several L-arginine analogues. These results indicate that rat and bovine adrenal cytosol contains an L-arginine:NO synthase.  相似文献   

17.
The broad objective of these studies was to understand the nature of cyclic GMP system and the mechanism(s) whereby hormone, autacoids and drugs alter this signal in various physiological systems. Studies were undertaken on the modulation of guanylate cyclase activity by oxygen-radicals/nitric oxide and the mechanism(s) of generation of nitric oxide by receptor-selective hormones. We observed that cytosolic guanylate cyclase undergoes significant stimulation in the presence of oxygen-radicals/nitric oxide. This activation by nitric oxide can be reversed by hemeproteins, thus, enabling guanylate cyclase system to cycle between activated and deactivated state. The evidence is presented that oxygen-radicals are required for the synthesis of nitric oxide by NO synthase as demonstrated by inhibition of NO formation by oxygen-radical scavengers. And finally, the data is presented that acetylcholine-induced elevations of intracellular levels of cyclic GMP can be attenuated by muscarinic antagonist, atropine and superoxide anion scavenger, nitroblue tetrazolium. These observations establish a novel concept that activation of hormone receptors on the cell surface, triggers generation of oxygen radicals and hydrogen peroxide which participates in the catalytic conversion of L-arginine to nitric oxide by nitric oxide synthase in the presence of calcium ion. The oxygen-radicals/NO, thus formed, oxidatively activate guanylate cyclase and transduce the message of calcium-dependent hormones.  相似文献   

18.
The mature rat testis contains both a soluble guanylate cyclase and a soluble adenylate cyclase. Both these soluble enzymes prefer manganous ion for activity. It is known that guanylate cyclase can, when activated by a variety of agents, catalyze the formation of cyclic AMP. The following experiments were performed to determine whether the testicular soluble adenylate and guanylate cyclase activities were carried on the same molecule. Analysis of supernatants from homogenized rat testis by gel filtration and sucrose density gradient centrifugation showed that the two activities were clearly separable. The molecular weight of guanylate cyclase is 143 000, while that of adenylate cyclase is 58 000. Treatment of the column fractions with 0.1 mM sodium nitroprusside allowed guanylate cyclase activity to be expressed with Mg(2+) as well as with Mn(2+). Sodium nitroprusside did not affect the metal ion or substrate specificity of adenylate cyclase. These experiments show that adenylate and guanylate cyclase activities are physically separable.  相似文献   

19.
Particulate guanylate cyclase from rat lung was stimulated less than 2-fold by agents capable of activating the soluble guanylate cyclase, including sodium nitroprusside, MNNG, azide and hydroxylamine. The action of the first two agents was potentiated by 10 mM 2-mercaptoethanol, and that of the last two by catalase. Pretreatment of the particulate enzyme with the polyene antibiotic, filipin, potentiated the stimulatory effects of the activators, activity with 1 mM nitroprusside in the presence of 2-mercaptoethanol being increased 10.4-fold over basal. The enzyme treated with filipin and nitroprusside showed less specificity for Mn2+, as it was able to use Mg2+ as sole cation more efficiently than the untreated enzyme. Since filipin is known to alter membrane fluidity by interacting with membrane cholesterol, it is proposed that the activity of membrane bound guanylate cylase may be regulated in part by the fluid state of the phospholipid matrix.  相似文献   

20.
In the presence of oxidized low-density lipoprotein the stimulatory effects of nitric oxide, sodium nitroprusside and S-nitrosoglutathione on soluble guanylate cyclase partially purified from bovine platelets were diminished in a concentration-dependent manner with IC50 values around 100 micrograms total cholesterol/ml. This inhibitory effect was potentiated about 10-fold when the enzyme was pre-incubated with the lipoprotein for 10 minutes at 37 degrees C which indicates a direct interaction of the lipoprotein with the guanylate cyclase. As oxidized low-density lipoprotein is present in the wall of atherosclerotic arteries, we suggest that the impaired response of atherosclerotic blood vessels to vasodilators may be due to a diminished activation of smooth muscle guanylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号