首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Water transport mechanisms in rabbit proximal convoluted cell membranes were examined by measurement of: (1) osmotic (P f ) and diffusional (P d ) water permeabilities, (2) inhibition ofP f by mercurials, and (3) activation energies (E a ) forP f .P f was measured in PCT brush border (BBMV) and basolateral membrane (BLMV) vesicles, and in viable PCT cells by stopped-flow light scattering;P d was measured in PCT cells by proton NMR Ti relaxation times using Mn as a paramagnetic quencher. In BLMV,P f (0.019 cm/sec, 23°C) was inhibited 65% by 5mm pCMBS and 75% by 300 m HgCl2 (K l =42 m);E a increased from 3.6 to 7.6 kcal/mole (15–40°C) with 300 m HgCl2. In BBMV,P f (0.073 cm/sec, 23°C,E a =2.8 kcal/mole, <33°C and 13.7 kcal/mole, >33°C) was inhibited 65% with HgCl2 withE a =9.4 kcal/mole (15–45°C). Mercurial inhibition in BLMV and BBMV was reversed with 10 m mercaptoethanol. Viable PCT cells were isolated from renal cortex by Dounce homogenization and differential seiving. Impedence sizing studies show that PCT cells are perfect osmometers (100–1000 mOsm). Assuming a cell surface-to-volume ratio of 25,000 cm–1,P f was 0.010±0.002 cm/sec (37°C) andP d was 0.0032 cm/sec.P f was independent of osmotic gradient size (25–1000 mOsm) withE a 2.5 kcal/mole (<27°C) and 12.7 kcal/mole (>27°C). CellP f was inhibited 53% by 300 m HgCl2 (23°C) withE a 6.2 kcal/mole. These findings indicate that cellP f is not restricted by extracellular or cytoplasmic unstirred layers and that cellP f is not flow-dependent. The high BLMV and BBMVP f , inhibition by HgCl2, lowE a which increases with inhibition, and the measuredP f /P d >1 in cells in the absence of unstirred layers provide strong evidence for the existence of water channels in proximal tubule brush border and basolateral membranes. These channels are similar to those found in erythrocytes and are likely required for rapid PCT transcellular water flow.  相似文献   

2.
Summary Osmotic water permeability of the apical membrane of toad urinary epithelium is increased greatly by vasopressin (VP) and is associated with exocytic addition of granules and aggrephores at the apical surface. To determine the physiological role of granule exocytosis, we measured the osmotic water permeability and membrane fluidity of isolated granules, surface membranes and microsomes prepared from toad bladder in the presence and absence of VP.P f was measured by stopped-flow light scattering and membrane fluidity was examined by diphenylhexatriene (DPH) fluorescence anisotropy. In response to a 75mm inward sucrose gradient, granule size decreased with a single exponential time constant of 2.3±0.1 sec (sem, seven preparations, 23°C), corresponding to aP f of 5×10–4 cm/sec; the activation energy (E a ) forP f was 17.6±0.8 kcal/mole. Under the same conditions, the volume of surface membrane vesicles decreased biexponentially with time constants of 0.13 and 1.9 sec; the fast component comprised 70% of the signal. Granule, surface membrane and microsome time constants were unaffected by VP. However, in surface membranes, there was a small decrease (6±2%) in the fraction of surface membranes with fast time constant. DPH anisotropies were 0.253 (granules), 0.224 (surface membrane fluidity is remarkably lower than that of surface and microsomal membranes, and (4) rapid water transport occurs in surface membrane vesicles. The unique physical properties of the granule suggests that apical exocytic addition of granule membrane may be responsible for the low water permeability of the unstimulated apical membrane.  相似文献   

3.
Summary Water transport across the mammalian collecting tubule is regulated by vasopressin-dependent water channel insertion into and retrieval from the cell apical membrane. The time course of osmotic water permeability (P f ) following addition and removal of vasopressin (VP) and 8-Br-cAMP was measured continuously by quantitative fluorescence microscopy using an impermeant fluorophore perfused in the lumen. Cortical collecting tubules were subjected to a 120 mOsm bath-to-lumen osmotic gradient at 37°C with 10–15 nl/min lumen perfusion and 10–20 ml/min bath exchange rate. With addition of VP (250 U/ml), there was a 23±3 sec (sem,n=16) lag in whichP f did not change, followed by a rise inP f (initial rate 1.4±0.2×10–4 cm/sec2) to a maximum of 265±10×10–4 cm/sec. With addition of 8-Br-cAMP (0.01–1mm) there was an 11±2 sec lag. For [8-Br-cAMP]=0.01, 0.1 and 1mm, the initial rate ofP f increase following the lag was (units 10–4 cm/sec2): 1.1±0.1, 1.2±0.1 and 1.7±0.3. MaximumP f was (units 10–4 cm/sec): 64±4, 199±9 and 285±11. With removal of VP,P f decreased to baseline (12×10–4 cm/sec) with aT 1/2 of 18 min; removal of 0.1 and 1mm 8-Br-cAMP gaveT 1/2 of 4 and 8.5 min. These results demonstrate (i) a brief lag in theP f response, longer for stimulation by VP than by 8-Br-cAMP, representing the transient build-up of biochemical intermediates proximal to the water channel insertion step, (ii) similar initialdP f /dt (water channel insertion) over a wide range of [8-Br-cAMP] and steady-stateP f values, and (iii) more rapidP f decrease with removal of 8-Br-cAMP than with VP. These pre-steady-state results define the detailed kinetics of the turn-on and turn-off of tubuleP f and provide kinetic evidence that the rate-limiting step for turn-on ofP f is not the step at which VP regulates steady-stateP f . If water channel insertion is assumed to be the rate-limiting step in the turn-on ofP f , these results raise the possibility that water channels must be activated following insertion into the apical membrane.  相似文献   

4.
Summary Literature data suggest that water accumulation by the human fetus is driven by osmotic gradients of small solutes. However, the existence of such gradients has not been supported by prior measurements. Attempts to estimate the size of the gradient necessary to drive net water movement have been seriously hampered by the lack of permeability data for the syncytiotrophoblast membranes. Stopped-flow light scattering techniques were employed to measure the osmotic water permeability (P f )of microvillous (MVM) and basal membrane (BM) vesicles isolated from human term placenta. At 37°C, the P f was determined to be 1.9±0.06 × 10+–3 cm/sec for MVM and 3.1±0.20 × 10+–3 cm/sec for BM (mean ±SD, n = 6). At 23°C, P f was reduced to 0.7±0.04 × 10+–3 cm/sec in MVM and 1.6±0.05 × 10+–3 cm/sec in BM. These P f values are comparable to those observed in membranes where water has been shown to permeate via a lipid diffusive mechanism. Arrhenius plots of P f over the range 20–40°C were linear, with activation energies of 13.6 ± 0.6 kcal/mol for MVM and 12.9±1.0 kcal/mol for BM. Water permeation was not affected by mercurial sulfhydryl agents and glucose transport inhibitors. These data clearly suggest that water movement across human syncytiotrophoblast membranes occurs by a lipid diffusion pathway. As noted in several other epithelial tissues, the basal membrane has a higher water permeability than the microvillous membrane. It is speculated that water accumulation by the human fetus could be driven by a solute gradient small enough to be within the error of osmolarity measurements.We thank the staff of the labor and delivery ward at University of San Francisco Medical Center for help in obtaining placental tissue. This work was supported by NIH grant HD 26392. Dr. Jansson was supported by the Sweden-America Foundation, The Swedish Society of Medicine, The Swedish Society for Medical Research, and the Swedish Medical Research Council.  相似文献   

5.
Summary Intracellular C1, K and Na activities (a Cl i ,a k i anda Na i ) and transmucosal membrane potential (E m) in epithelial cells ofNecturus gallbladder were measured at different external Na concentrations ([Na]o), with liquid ion-exchanger and conventional microelectrodes. Bladders were mounted in a divided chamber at 23°C between identical HCO3-free Ringer solutions containing 5mm K. The pH was 7.2. Tris was substituted for Na. Measurements were made under steady-state conditions as determined by the constancy of the transepithelial potential difference. Both,a Cl i anda Na i increased in a saturable fashion with [Na]o.E m did not change significantly. Average values (±sem) under normal conditions ([Na]o=100mm) fora Cl i ,a Na i andE m were 16.8±0.8mm (n=9), 9.7±0.6mm (n=10) and –52.6±0.6 mV (n=26), respectively. In Na-free mediaa Cl i declined to its equilibrium value.a K i (96±2mm;n=7) did not change when [Na]o was varied between 100 and 10mm but decreased to 80±3mm (n=4) in Na-free media.Transmembrane electrochemical potential differences, , for Cl and Na were calculated at four different [Na]o levels. A highly significant linear relation between and was found, indicating that Cl and Na transport are energetically linked. The results support the view that the energy necessary for intracellular Cl accumulation is derived from the simultaneous dissipation of the chemical potential gradient of Na across the apical membrane and that the coupled entry mechanism is electroneutral.  相似文献   

6.
Summary Mouse hepatocytes in primary monolayer culture (4 hr) were exposed for 10 min at 37°C to anisosmotic medium of altered NaCl concentration. Hepatocytes maintained constant relative cell volume (experimental volume/control volume) as a function of external medium relative osmolality (control mOsm/experimental mOsm), ranging from 0.8 to 1.5. In contrast, the relative cell volume fit a predicted Boyle-Van't Hoff plot when the experiment was done at 4°C. Mouse liver slices were used for electrophysiologic studies, in which hepatocyte transmembrane potential (V m ) and intracellular K+ activity (a K i ) were recorded continuously by open-tip and liquid ion-exchanger ion-sensitive glass microelectrodes, respectively. Liver slices were superfused with control and then with anisosmotic medium of altered NaCl concentration.V m increased (hyperpolarized) with hypoosmotic medium and decreased (depolarized) with hyperosmotic medium, and ln [10(experimentalV m /controlV m )] was a linear function of relative osmolality (control mOsm/experimental mOsm) in the range 0.8–1.5. Thea K i did not change when medium osmolality was decreased 40–70 mOsm from control of 280 mOsm. Similar hypoosmotic stress in the presence of either 60mm K+ or 1mm quinine HCl or at 27°C resulted in no change inV m compared with a 20-mV increase inV m without the added agents or at 37°C. We conclude that mouse hepatocytes maintain their volume anda K i in response to anisosmotic medium; however,V m behaves as an osmometer under these conditions. Also, increases inV m by hypoosmotic stress were abolished by conditions or agents that inhibit K+ conductance.  相似文献   

7.
Summary The effects of ambient temperature (T a) on ventilation and gas exchange in chukar partridges (Alectoris chukar) were determined after acclimation to low and high altitute (LA and HA; 340 and 3,800 m, respectively).At both LA and HA, oxygen consumption ( ) increased with decreasingT a atT a from 20 to –20°C. AtT a of 35 to 40°C, increased above thermoneutral values at HA but remained constant and minimal at LA. Water loss rates increased rapidly atT a>30°C at both altitudes as birds began to pant. Ventilation rates (f) during panting were 5-to 23-fold greater than the minimalf at thermoneutralT a.Increased atT a below thermoneutrality was supported by increased minute volume (V i) at both altitudes. The change inV i was primarily a function of changing tidal volume (V t), althoughf increased slightly asT a declined. Oxygen extraction ( ) remained fairly constant atT a below 20°C at both altitudes. BothV t and were considerably lower when birds were panting than at lowerT a.Chukars showed few obvious ventilatory adaptations to HA. The 35% change in between 340 and 3,800 m was accommodated by a corresponding change inV i (btps), most of which was accomplished by increasedf at HA, along with a slight increase in .Abbreviations and symbols HA high altitude - LA low altitude - rate of evaporative water loss - oxygen extraction efficiency - f respiratory frequency - V t tidal volume - V i minute volume - BMR basal metabolic rate - MHP metabolic heat production  相似文献   

8.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

9.
Summary Sodium (22Na) transport was studied in a basolateral membrane vesicle preparation from rabbit parotid. Sodium uptake was markedly dependent on the presence of both K+ and Cl in the extravesicular medium, being reduced 5 times when K+ was replaced by a nonphysiologic cation and 10 times when Cl was replaced by a nonphysiologic anion. Sodium uptake was stimulated by gradients of either K+ or Cl (relative to nongradient conditions) and could be driven against a sodium concentration gradient by a KCl gradient. No effect of membrane potentials on KCl-dependent sodium flux could be detected, indicating that this is an electroneutral process. A KCl-dependent component of sodium flux could also be demonstrated under equuilibrium exchange conditions, indicating a direct effect of K+ and Cl on the sodium transport pathway. KCl-dependent sodium uptake exhibited a hyperbolic dependence on sodium concentration consistent with the existence of a single-transport system withK m =3.2mm at 80mm KCl and 23°C. Furosemide inhibited this transporter withK 0.5=2×10–4 m (23°C). When sodium uptake was measured as a function of potassium and chloride concentrations a hyperbolic dependence on [K] (Hill coefficient =1.31±0.07) were observed, consistent with a Na/K/Cl stoichiometry of 112. Taken together these data provide strong evidence for the electroneutral coupling of sodium and KCl movements in this preparation and strongly support the hypothesis that a Na+/K+/Cl cotransport system thought to be associated with transepithelial chloride and water movements in many exocrine glands is present in the parotid acinar basolateral membrane.  相似文献   

10.
Summary The effects of various agents on active sodium transport were studied in the toad bladder in terms of the equivalent circuit comprising an active conductanceK a, an electromotive forceE Na, and a parallel passive conductanceK p. For agents which affectK a, but notE Na orK p, the inverse slope of the plot of total conductance against short-circuit currentI 0 evaluatesE Na, and the intercept representsK p. Studies employing 5×10–7 m amiloride to depressK a indicate a changingE Na, invalidating the use of the slope technique with this agent. An alternative suitable technique employs 10–5 m amiloride, which reducesI 0 reversibly to near zero without effect onK p. Despite curvilinearity of the -I0 plot under these conditions,K p may therefore be estimated fairly precisely from the residual conductance. It then becomes possible to follow the dynamic behavior ofK a andE Na (in the absence of 10–5 m amiloride) by frequent measurements of andI 0, utilizing the relationshipsK a=K-K p, andK Na=I O/(K-K p). 2-deoxy-d-glucose (7.5×10–3 m) depressedK a without affectingE Na. Amiloride (5×10–7 m) depressedK a and enhancedE Na. Vasopressin (100 mU/ml) enhancedK a markedly and depressedE Na slightly. Ouabain (10–4 m) depressed bothK a andE Na. All of the above effects were noted promptly;K p was unaffected. The electromotive force of Na transportE Na appears not to be a pure energetic parameter, but to reflect kinetic factors as well, in accordance with thermodynamic considerations.  相似文献   

11.
In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability.Osmotic water permeability (Pf) at 23 °C was (2.89 ± 0.37) × 10−2 and (5.12 ± 0.61) × 10−2 cm s−1 for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (Pgly) for human ((1.37 ± 0.26) × 10−5 cm s−1) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10−8 cm s−1) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger Pf found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes.In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high Ea for transport observed in ruminants.  相似文献   

12.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

13.
Summary Efflux of36Cl from frog sartorius muscles equilibrated in two depolarizing solutions was measured. Cl efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases.For temperatures between 0 and 20°C, the measured activation energy is 7.5 kcal/mol for Cl efflux at pH 5 and 12.6 kcal/mol for the pH-dependent Cl efflux. The pH-dependent Cl efflux can be described by the relationu=1/(1+10n(pK a -pH)), whereu is the Cl efflux increment obtained on stepping from pH 5 to the test pH, normalized with respect to the increment obtained on stepping from pH 5 to 8.5 or 9.0. For muscles equilibrated in solutions containing 150mm KCl plus 120mm NaCl (internal potential about –15 mV), the apparent pK a is 6.5 at both 0 and 20°C, andn=2.5 for 0°C and 1.5 for 20°C. For muscles equilibrated in solutions containing 7.5mm KCl plus 120mm NaCl (internal potential about –65 mV), the apparent pK a at 0°C is 6.9 andn is 1.5. The voltage dependence of the apparent pK a suggests that the critical pH-sensitive moiety producing the pH-dependent Cl efflux is sensitive to the membrane electric field, while the insensitivity to temperature suggests that the apparent heat of ionization of this moiety is zero. The fact thatn is greater than 1 suggests that cooperativity between pH-sensitive moieties is involved in determining the Cl efflux increment on raising external pH.The histidine-modifying reagent diethylpyrocarbonate (DEPC) applied at pH 6 reduces the pH-dependent Cl efflux according to the relation, efflux=exp(–k·[DEPC]·t), wheret is the exposure time (min) to DEPC at a prepared initial concentration of [DEPC] (mm). At 17°C,k –1=188mm·min. For temperatures between 10 and 23°C,k has an apparent Q10 of 2.5. The Cl efflux inhibitor SCN at a concentration of 20mm substantially retards the reduction of the pH-dependent Cl efflux by DEPC. The findings that the apparent pK a is 6.5 in depolarized muscles, that DEPC eliminates the pH-dependent Cl efflux, and that this action is retarded by SCN supports the notion that protonation of histidine groups associated with Cl channels is the controlling reaction for the pH-dependent Cl efflux.  相似文献   

14.
Summary Active HCO 3 t- secretion in the anterior rectal salt gland of the mosquito larva,Aedes dorsalis, is mediated by a 11 Cl/HCO 3 exchanger. The cellular mechanisms of HCO 3 and Cl transport are examined using ion- and voltage-sensitive microelectrodes in conjunction with a microperfused preparation which allowed rapid saline changes. Addition of DIDS or acetazolamide to, or removal of CO2 and HCO 3 from, the serosal bath caused large (20 to 50 mV) hyperpolarizations of apical membrane potential (V a) and had little effect on basolateral potential (V bl). Changes in luminal Cl concentration alteredV a in a repid, linear manner with a slope of 42.2 mV/decaloga Cl l –. Intracellular Cl activity was 23.5mm and was approximately 10mm lower than that predicted for a passive distribution across the apical membrane. Changes in serosal Cl concentration had no effect onV bl, indicating an electrically silent basolateral Cl exit step. Intracellular pH in anterior rectal cells was 7.67 and the calculated was 14.4mm. These results show that under control conditions HCO3 enters the anterior rectal cell by an active mechanism against an electrochemical gradient of 77.1 mV and exits the cell at the apical membrane down a favorable electrochemical gradient of 27.6 mV. A tentative cellular model is proposed in which Cl enters the apical membrane of the anterior rectal cells by passive, electrodiffusive movement through a Cl-selective channel, and HCO 3 exits the cell by an active or passive electrogenic transport mechanism. The electrically silent nature of basolateral Cl exit and HCO3 entry, and the effects of serosal addition of the Cl/HCO3 exchange inhibitor, DIDS, on and transepithelial potential (V ic) suggest strongly that the basolateral membrane is the site of a direct coupling between Cl and HCO 3 movements.  相似文献   

15.
Summary Pulmonary CO-diffusing capacity (D l CO), lung volume, pulmonary perfusion and O2-uptake were measured by non-invasive techniques in the lizardsVaranus exanthematicus andTupinambis teguixin (mean body weight 2.2 kg for both species).The CO-diffusing capacity was at 25–27°C 0.059 mlstpd·kg–1·min–1·Torr–1 inVaranus, which is 47% greater than the value of 0.040 mlstpd·kg–1·min–1·Torr–1 inTupinambis. The lung volume ofVaranus was 36 ml·kg–1 and that ofTupinambis 20 ml·kg–1. At 35–37°C the diffusing capacity of lizard lungs are about 25% of those for mammals of comparable size.InVaranus pulmonary CO-diffusing capacity increased with temperature from 0.027 mlstpd·kg–1·min–1·Torr–1 at 17–19 °C to 0.075 mlstpd·kg–1·min–1·Torr–1 at 35–37 °C. This change closely matched a concomitant increase of O2-uptake. Pulmonary perfusion increased from 27 ml·kg–1·min–1 to 55 ml·kg–1·min–1 within this temperature range.The study emphasizes that pulmonary diffusing capacity cannot be fully evaluated without information on pulmonary perfusion and O2-uptake. In reptiles and other ectotherms diffusing capacity must be reported at specified body temperature.  相似文献   

16.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

17.
Summary As part of a genetic study of the mechanisms for cation transport in cultured mammalian cells, two mouse fibroblastic cell lines have been compared with respect to unidirectional42K+ influx. The cell lines areLM(TK ) andLTK-5, a mutant selected fromLM(TK ) by the ability to grow in medium containing 0.2mm K+. In both cell lines, the overall influx can be resolved into three components: (i) a ouabain- and vanadate-sensitive component ( i MK f), presumably the Na/K pump, which is a saturable function of extracellular K+ with aK 1/2 of 1.3mm; (ii) a furosemide-sensitive component ( i Mk fx), also a saturable function of extracellular K+, with aK 1/2 of 6mm; and (iii) a diffusional component ( i Mk d); which is a linear function of extracellular K+.By several independent criteria, i Mk o and i Mk f appear to be distinct transport processes. First, as indicated above, they can be separated with the use of inhibitors. In addition, they can be separated genetically, since theLTK-5 mutant shows a threefold elevation in i Mk f with no change in i Mk o. And finally, extracellular Na+ has no effect on i Mk o, but stimulates i Mk f, a result consistent with the notion that i Mk f influx occurs by Na–K cotransport.Further experiments were directed towards understanding the nature of theLTK-5 mutation and the physiological role of i Mk f. LTK-5 differs from the parental cell line, not only in having an increased i Mk f, but also in having a large cell volume, a slow maximal growth rate, and an ability to grow at 0.2mm K+. The most straightforward interpretation — that the increased i Mk f is itself responsible—is unlikely since the addition of furosemide to the growth medium had no effect upon the growth rate or cell volume of the mutant at either normal or low extracellular K+ concentrations. It did, however, render the parent capable of growth at 0.2mm K+. Possible interpretations are discussed.  相似文献   

18.
Summary A stopped-flow nephelometric technique was used to examine osmotic water flow across small intestinal brush-border membranes. Brush-border membrane vesicles (BBMV) were prepared from rat small intestine by calcium precipitation. Scattered 500 nm light intensity at 90° to incident was a linear function of the number of vesicles in suspension, and of the reciprocal of the suspending medium osmolality. When BBMV were mixed with hyperosmotic mannitol solutions there was a rapid increase in the intensity of scattered light that could be fit to a single exponential function. The rate constant for vesicle shrinking varied with temperature and the size of the imposed osmotic gradient. At 25°C and an initial osmotic gradient of 50 mOsm, the rate constant was 1.43±0.044 sec–1. An Arrhenius plot of the temperature dependence of vesicle shrinking showed a break at about 25°C with an activation energy of 9.75±1.04 kcal/mole from 11 to 25°C and 17.2±0.55 kcal/mole from 25 to 37°C. The pore-forming antibiotic gramicidin increased the rate of osmotically driven water efflux and decreased the activation energy of the process to 4.51±0.25 kcal/mole. Gramicidin also increased the sodium permeability of these membranes as measured by the rate of vesicle reswelling in hyperosmotic NaSCN medium. Gramicidin had no effect on mannitol permeability. Assuming spherical vesicles of 0.1 m radius, an osmotic permeability coefficient of 1.2×10–3 cm/sec can be estimated for the native brush-border membranes at 25°C. These fesults are consistent with the solubility-diffusion model for water flow across small intestinal BBMV but are inconsistent with the existence there of large aqueous pores.  相似文献   

19.
Summary The effects of bathing solution HCO 3 /CO2 concentrations on baseline cell membrane voltages and resistances were measured inNecturus gallbladder epithelium with conventional intracellular microelectrode techniques. Gallbladders were bathed in either low HCO 3 /CO2 Ringer's solutions (2.4mm HCO 3 /air or 1mm HEPES/air) or a high HCO 3 /CO2 Ringer's (10mm HCO 3 /1% CO2). The principal finding of these studies was that the apical membrane fractional resistance (fR a) was higher in tissues bathed in the 10mm HCO 3 /CO2 Ringer's, averaging 0.87±0.06, whereasfR a averaged 0.63±0.07 and 0.48±0.08 in 2.4mm HCO 3 and 1mm HEPES, respectively. Intraepithelial cable analysis was employed to obtain estimates of the individual apical (R a) and basolateral membrane (R b) resistances in tissues bathed in 10mm HCO 3 /1% CO2 Ringer's. Compared to previous resistance measurements obtained in tissues bathed in a low HCO 3 /CO2 Ringer's, the higher value offR a was found to be due to both an increase inR a and a decrease inR b. The higher values offR a and lower values ofR b confirm the recent observations of others. To ascertain the pathways responsible for these effects, cell membrane voltages were measured during serosal solution K+ and Cl substitutions. The results of these studies suggest that an electrodiffusive Cl transport mechanism exists at the basolateral membrane of tissues bathed in a 10mm HCO 3 /1% CO2 Ringer's, which can explain in part the fall inR b. The above observations are discussed in terms of a stimulatory effect of solution [HCO 3 /PCO2 on transepithelial fluid transport, which results in adaptive changes in the conductive properties of the apical and basolateral membranes.  相似文献   

20.
Costa  E.S.  Bressan-Smith  R.  Oliveira  J.G.  Campostrini  E. 《Photosynthetica》2003,41(1):77-82
Bean plants Phaseolus vulgaris L. (cv. Carioca and Negro Huasteco) and Vigna unguiculata L. Walp (cv. Epace-10) were grown in a growth chamber with a photosynthetic photon flux density of 200 mol m–2 s–1 at leaf level and air temperature of 25+1 °C. Fully expanded, first pair leaves of 12-d-old plants were submitted for 90 min to high temperature (25, 30, 35, 40, 45, and 48 °C). Chlorophyll a fluorescence parameters (ETR, qP, qN, and F0) were investigated using a modulated fluorimeter at 25 °C during recovery considered here as 48 h after stress induction period. An accentuated decrease in qP and an increase in qN at 48 °C in Carioca and Negro Huasteco was not observed in Epace-10. In response to excitation irradiance a great potential for ETR was found in Negro Huasteco at 25 °C, also demonstrated by net photosynthetic rate. At 48 °C ETR was high for Epace-10 while it was equal to zero for Carioca and Negro Huasteco. Tolerance to high temperature observed in Epace-10 provided important information about the adaptative characteristics of Vigna cultivars to warm climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号