首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The full-length provirus of human T-cell leukemia virus type I (HTLV-I) was isolated from MT-2, a lymphoid cell line producing HTLV-I. In transfected cells, structural proteins of HTLV-I, the gag and env products, were formed and processed in the same manner as observed in MT-2 cells. The nucleotide sequence was determined for a region between the gag and pol genes of the proviral DNA clone containing an open-reading frame. The deduced amino acid sequences show that this open-reading frame encodes a putative HTLV-I protease. The protease gene (pro) of HTLV-I was investigated using a vaccinia virus expression vector. Processing of 53k gag precursor polyprotein into mature p19, p24, and p15 gag structural proteins was detectable with a recombinant plasmid harboring the entire gag- and protease-coding sequence. We demonstrated that the protease processed the gag precursor polyprotein in a trans-action. A change in the sequence Asp(64)-Thr-Gly, the catalytic core sequence among aspartyl proteases, to Gly-Thr-Gly was shown to abolish correct processing, suggesting that HTLV-I protease may belong to the aspartyl protease group. The 76k gag-pro precursor polyprotein was identified, implying that a cis-acting function of HTLV-I protease may be necessary to trigger the initial cleavage event for its own release from a precursor protein, followed by the release of p53 gag precursor protein. The p53 gag precursor protein is then processed by the trans-action of the released protease to form p19, p24, and p15.  相似文献   

2.
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.  相似文献   

3.
The PABP [poly(A)-binding protein] is able to interact with the 3' poly(A) tail of eukaryotic mRNA, promoting its translation. Cleavage of PABP by viral proteases encoded by several picornaviruses and caliciviruses plays a role in the abrogation of cellular protein synthesis. We report that infection of MT-2 cells with HIV-1 leads to efficient proteolysis of PABP. Analysis of PABP integrity was carried out in BHK-21 (baby-hamster kidney) and COS-7 cells upon individual expression of the protease from several members of the Retroviridae family, e.g. MoMLV (Moloney murine leukaemia virus), MMTV (mouse mammary tumour virus), HTLV-I (human T-cell leukaemia virus type I), SIV (simian immunodeficiency virus), HIV-1 and HIV-2. Moreover, protease activity against PABP was tested in a HeLa-cell-free system. Only MMTV, HIV-1 and HIV-2 proteases were able to cleave PABP in the absence of other viral proteins. Purified HIV-1 and HIV-2 proteases cleave PABP1 directly at positions 237 and 477, separating the two first RNA-recognition motifs from the C-terminal domain of PABP. An additional cleavage site located at position 410 was detected for HIV-2 protease. These findings indicate that some retroviruses may share with picornaviruses and caliciviruses the capacity to proteolyse PABP.  相似文献   

4.
The culprit behind adult T-cell leukemia, myelopathy/tropical paraparesis, and a plethora of inflammatory diseases is the human T-cell leukemia virus type 1 (HTLV-I). We recently unveiled a potent hexapeptidic HTLV-I protease inhibitor, KNI-10166, composed mostly of natural amino acid residues. Herein, we report the derivation of potent tetrapeptidic inhibitor KNI-10516, possessing only non-natural amino acid residues.  相似文献   

5.
The human T cell leukemia/lymphotropic virus type 1 (HTLV-I) is clinically associated with adult T cell leukemia/lymphoma, HTLV-I associated myelopathy/tropical spastic paraparesis, and a number of other chronic inflammatory diseases. To stop the replication of the virus, we developed highly potent tetrapeptidic HTLV-I protease inhibitors. In a recent X-ray crystallography study, several of our inhibitors could not form co-crystal complexes with the protease due to their high hydrophobicity. In the current study, we designed, synthesized and evaluated the HTLV-I protease inhibition potency of compounds with hydrophilic end-capping moieties with the aim of improving pharmaceutic and pharmacokinetic properties.  相似文献   

6.
Aspartic proteases have emerged as targets for substrate-based inhibitor design due to their vital roles in the life cycles of the organisms that cause AIDS, malaria, leukemia, and other infectious diseases. Based on the concept of mimicking the substrate transition-state, we designed and synthesized a novel class of aspartic protease inhibitors containing the hydroxymethylcarbonyl (HMC) isostere. An unnatural amino acid, allophenylnorstatine [Apns; (2 S ,3 S )-3-amino-2-hydroxy-4-phenylbutyric acid], was incorporated at the P1 site in a series of peptidomimetic compounds that mimic the natural substrates of the HIV, HTLV-I, and malarial aspartic proteases. From extensive structure-activity relationship studies, we were able to identify a series of highly potent peptidomimetic inhibitors of HIV protease. One highly potent inhibitor of the malarial aspartic protease (plasmepsin II) was identified. Finally, a promising lead compound against the HTLV-I protease was identified.  相似文献   

7.
Herpesvirus proteases are essential for the production of progeny virus. They cleave the assembly protein that fills the immature capsid in order to make place for the viral DNA. The recombinant protease of the human gamma-herpesvirus Epstein-Barr virus (EBV) was expressed in Escherichia coli and purified. Circular dichroism indicated that the protein was properly folded with a secondary structure content similar to that of other herpesvirus proteases. Gel filtration and sedimentation analysis indicated a fast monomer-dimer equilibrium of the protease with a K(d) of about 60 microM. This value was not influenced by glycerol but was lowered to 1.7 microM in the presence of 0.5 M sodium citrate. We also developed an HPLC-based enzymatic assay using a 20 amino acid residue synthetic peptide substrate derived from one of the viral target sequences for the protease. We found that conditions that stabilised the dimer also led to a higher enzymatic activity. Through sequential deletion of amino acid residues from either side of the cleavage site, the minimal peptide substrate for the protease was determined as P5-P2'. This minimal sequence is shorter than that for other herpesvirus proteases. The implications of our findings are discussed with reference to the viral life-cycle. These results are the first ever published on the EBV protease and represent a first step towards the development of protease inhibitors.  相似文献   

8.
Human immunodeficiency virus protease activity can be regulated by reversible oxidation of a sulfur-containing amino acid at the dimer interface. We show here that oxidation of this amino acid in human immunodeficiency virus type 1 protease prevents dimer formation. Moreover, we show that human T-cell leukemia virus type 1 protease can be similarly regulated through reversible glutathionylation of its two conserved cysteine residues. Based on the known three-dimensional structures and multiple sequence alignments of retroviral proteases, it is predicted that the majority of retroviral proteases have sulfur-containing amino acids at the dimer interface. The regulation of protease activity by the modification of a sulfur-containing amino acid at the dimer interface may be a conserved mechanism among the majority of retroviruses.  相似文献   

9.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

10.
Mutagenesis of the NS3 Protease of Dengue Virus Type 2   总被引:4,自引:3,他引:1       下载免费PDF全文
The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis study provided us with an array of mutations that alter the cleavage efficiency of the dengue virus protease. Mutations that decrease protease activity without abolishing it are candidates for introduction into the dengue virus infectious full-length cDNA clone with the aim of creating potentially attenuated virus stocks.  相似文献   

11.
We determined the nucleotide sequence of a region between the gag and pol genes of a replication-competent proviral clone of a human T-cell leukemia virus type I (HTLV-I) from MT-2 cells. This region overlapping the gag and pol genes contains an open reading frame with a different phase from others. The deduced amino acid sequences show significant homology with the known protease gene of other retroviruses, and harbors highly conserved amino acid sequences that are well conserved in other retroviral protease domains. These results indicate that this open reading frame encodes a HTLV-I protease.  相似文献   

12.
The specificities of the proteases of 11 retroviruses representing each of the seven genera of the family Retroviridae were studied using a series of oligopeptides with amino acid substitutions in the P2 position of a naturally occurring type 1 cleavage site (Val-Ser-Gln-Asn-Tyr Pro-Ile-Val-Gln; the arrow indicates the site of cleavage) in human immunodeficiency virus type 1 (HIV-1). This position was previously found to be one of the most critical in determining the substrate specificity differences of retroviral proteases. Specificities at this position were compared for HIV-1, HIV-2, equine infectious anemia virus, avian myeloblastosis virus, Mason-Pfizer monkey virus, mouse mammary tumor virus, Moloney murine leukemia virus, human T-cell leukemia virus type 1, bovine leukemia virus, human foamy virus, and walleye dermal sarcoma virus proteases. Three types of P2 preferences were observed: a subgroup of proteases preferred small hydrophobic side chains (Ala and Cys), and another subgroup preferred large hydrophobic residues (Ile and Leu), while the protease of HIV-1 preferred an Asn residue. The specificity distinctions among the proteases correlated well with the phylogenetic tree of retroviruses prepared solely based on the protease sequences. Molecular models for all of the proteases studied were built, and they were used to interpret the results. While size complementarities appear to be the main specificity-determining features of the S2 subsite of retroviral proteases, electrostatic contributions may play a role only in the case of HIV proteases. In most cases the P2 residues of naturally occurring type 1 cleavage site sequences of the studied proteases agreed well with the observed P2 preferences.  相似文献   

13.
A gene with significant similarity to bacterial Lon proteases was identified during the sequencing of the genome of the thermoacidophilic archaeon Thermoplasma acidophilum. Protein sequence comparison revealed that Thermoplasma Lon protease (TaLon) is more similar to the LonB proteases restricted to Gram-positive bacteria than to the widely distributed bacterial LonA. However, the active site residues of the protease and ATPase domain are highly conserved in all Lon proteases. Using site-directed mutagenesis we show here that TaLon and EcLon, and probably all other Lon proteases, contain a Ser-Lys dyad active site. The TaLon active site mutants were fully assembled and, similar to TaLon wild-type, displayed an apparent molar mass of 430 kDa upon gelfiltration. This would be consistent with a hexameric complex and indeed electron micrographs of TaLon revealed ring-shaped particles, although of unknown symmetry. Comparison of the ATPase activity of Lon wild-type from Thermoplasma or Escherichia coli with respective protease active site mutants revealed differences in Km and V values. This suggests that in the course of protein degradation by wild-type Lon the protease domain might influence the activity of the ATPase domain.  相似文献   

14.
Human T-cell leukemia virus type I (HTLV-I) protease has been purified to homogeneity from a strain of recombinant Escherichia coli. The protease was expressed as a larger precursor, which was autoprocessed to form a mature protease. Protein chemical analyses revealed the coding sequence of mature protease, which agreed with the putative sequence predicted from the sequence of bovine leukemia virus protease. The purified protease processed the natural substrate gag precursor (p53) to form gag p19 and gag p24. The protease activity was inhibited by pepstatin A. These results provide direct evidence that this protease belongs to the aspartic protease family and has an activity consistent with the protease in HTLV-I virion.  相似文献   

15.
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a number of human diseases; therefore, its protease is a potential target for chemotherapy. To compare the specificity of HTLV-1 protease with that of human immunodeficiency virus type 1 (HIV-1) protease, oligopeptides representing naturally occurring cleavage sites in various retroviruses were tested. The number of hydrolyzed peptides as well as the specificity constants suggested a substantially broader specificity of the HIV protease. Amino acid residues of HTLV-1 protease substrate-binding sites were replaced by equivalent ones of HIV-1 protease. Most of the single and multiple mutants had altered specificity and a dramatically reduced folding and catalytic capability, suggesting that mutations are not well tolerated in HTLV-1 protease. The catalytically most efficient mutant was that with the flap residues of HIV-1 protease. The inhibition profile of the mutants was also determined for five inhibitors used in clinical practice and inhibitor analogs of HTLV-1 cleavage sites. Except for indinavir, the HIV-1 protease inhibitors did not inhibit wild type and most of the mutant HTLV-1 proteases. The wild type HTLV-1 protease was inhibited by the reduced peptide bond-containing substrate analogs, whereas the mutants showed various degrees of weakened binding capability. Most interesting, the enzyme with HIV-1-like residues in the flap region was the most sensitive to the HIV-1 protease inhibitors and least sensitive to the HTLV-1 protease inhibitors, indicating that the flap plays an important role in defining the specificity differences of retroviral proteases.  相似文献   

16.
The 3C proteases of the encephalomyocarditis virus and the hepatitis A virus are both type III substrates for the mammalian ubiquitin-protein ligase E3alpha. The conjugation of ubiquitin to these proteins requires internal ten-amino acid-long protein destruction signal sequences. To evaluate how these destruction signals modulate interactions that must occur between E3alpha and the 3C proteases, we have kinetically analyzed the formation of ubiquitin-3C protease conjugates in a reconstituted system of purified E1, HsUbc2b/E2(14Kb), and human E3alpha. Our measurements show that the encephalomyocarditis virus 3C protease is ubiquitinated in this system with K(m) = 42 +/- 11 microm and V(max) = 0.051 +/- 0.01 pmol/min whereas the parameters for the ubiquitination of the hepatitis A virus 3C protease are K(m) = 20 +/- 5 microm and V(max) = 0.018 +/- 0.003 pmol/min. Mutations in the destruction signal sequences resulted in changes in the rate at which E3alpha conjugates ubiquitin to the altered 3C protease proteins. The K(m) and V(max) values for these reactions change proportionally in the same direction. These results suggest differences in rates of conjugation of ubiquitin to 3C proteases are primarily a k(cat) effect. Replacing specific encephalomyocarditis virus 3C protease lysine residues with arginine residues was found to increase, rather than decrease, the rate of ubiquitin conjugation, and the K(m) and V(max) values for these reactions are both higher than for the wild type protein. The ability of E3alpha to catalyze the conjugation of ubiquitin to both 3C proteases was found to be inhibited by lysylalanine and phenylalanylalanine, demonstrating that the same sites on E3alpha that bind destabilizing N-terminal amino acids in type I and II substrates also interact with the 3C proteases.  相似文献   

17.
Retroviral proteases are translated as a part of Gag-related polyproteins, and are released and activated during particle release. Mason-Pfizer monkey virus (M-PMV) Gag polyproteins assemble into immature capsids within the cytoplasm of the host cells; however, their processing occurs only after transport to the plasma membrane and subsequent release. Thus, the activity of M-PMV protease is expected to be highly regulated during the replication cycle. It has been proposed that reversible oxidation of protease cysteine residues might be responsible for such regulation. We show that cysteine residues in M-PMV protease can form an intramolecular S-S bridge. The disulfide bridge shifts the monomer/dimer equilibrium in favor of the dimer, and increases the proteolytic activity significantly. To investigate the role of this disulfide bridge in virus maturation and replication, we engineered an M-PMV clone in which both protease cysteine residues were replaced by alanine (M-PMV(PRC7A/C106A)). Surprisingly, the cysteine residues were dispensable for Gag polyprotein processing within the virus, indicating that even low levels of protease activity are sufficient for polyprotein processing during maturation. However, the long-term infectivity of M-PMV(PRC7A/C106A) was noticeably compromised. These results show clearly that the proposed redox mechanism does not rely solely on the formation of the stabilizing S-S bridge in the protease. Thus, in addition to the protease disulfide bridge, reversible oxidation of cysteine and/or methionine residues in other domains of the Gag polyprotein or in related cellular proteins must be involved in the regulation of maturation.  相似文献   

18.
The virally encoded proteases from human immunodeficiency virus (HIV) and avian myeloblastosis virus (AMV) have been compared relative to their ability to hydrolyze a variant of the three-domain Pseudomonas exotoxin, PE66. This exotoxin derivative, missing domain I and referred to as LysPE40, is made up of a 13-kilodalton NH2-terminal translocation domain II connected by a segment of 40 amino acids to enzyme domain III of the toxin, a 23-kilodalton ADP-ribosyltransferase. HIV protease hydrolyzes two peptide bonds in LysPE40, a Leu-Leu bond in the interdomain region and a Leu-Ala bond in a nonstructured region three residues in from the NH2-terminus. Neither of these sites is cleaved by the AMV enzyme; hydrolysis occurs, instead, at an Asp-Val bond in another part of the interdomain segment and at a Leu-Thr bond in the NH2-terminal region of domain II. Synthetic peptides corresponding to these cleavage sites are hydrolyzed by the individual proteases with the same specificity displayed toward the protein substrate. Peptide substrates for one protease are neither substrates nor competitive inhibitors for the other. A potent inhibitor of HIV type 1 protease was more than 3 orders of magnitude less active toward the AMV enzyme. These results suggest that although the crystallographic models of Rous sarcoma virus protease (an enzyme nearly identical to the AMV enzyme) and HIV type 1 protease show a high degree of similarity, there exist structural differences between these retroviral proteases that are clearly reflected by their kinetic properties.  相似文献   

19.
African swine fever virus (ASFV) is a complex DNA virus that employs polyprotein processing at Gly-Gly-Xaa sites as a strategy to produce several major core components of the viral particle. The virus gene S273R encodes a 31-kDa protein that contains a "core domain" with the conserved catalytic residues characteristic of SUMO-1-specific proteases and the adenovirus protease. Using a COS cell expression system, it was found that protein pS273R is capable of cleaving the viral polyproteins pp62 and pp220 in a specific way giving rise to the same intermediates and mature products as those produced in ASFV-infected cells. Furthermore, protein pS273R, like adenovirus protease and SUMO-1-specific enzymes, is a cysteine protease, because its activity is abolished by mutation of the predicted catalytic histidine and cysteine residues and is inhibited by sulfhydryl-blocking reagents. Protein pS273R is expressed late after infection and is localized in the cytoplasmic viral factories, where it is found associated with virus precursors and mature virions. In the virions, the protein is present in the core shell, a domain where the products of the viral polyproteins are also located. The identification of the ASFV protease will allow a better understanding of the role of polyprotein processing in virus assembly and may contribute to our knowledge of the emerging family of SUMO-1-specific proteases.  相似文献   

20.
Affinity tags are widely used as vehicles for the production of recombinant proteins. Yet, because of concerns about their potential to interfere with the activity or structure of proteins, it is almost always desirable to remove them from the target protein. The proteases that are most often used to cleave fusion proteins are factor Xa, enterokinase, and thrombin, yet the literature is replete with reports of fusion proteins that were cleaved by these proteases at locations other than the designed site. It is becoming increasingly evident that certain viral proteases have more stringent sequence specificity. These proteases adopt a trypsin-like fold but possess an unconventional catalytic triad in which Cys replaces Ser. The tobacco etch virus (TEV) protease is the best-characterized enzyme of this type. TEV protease cleaves the sequence ENLYFQG/S between QG or QS with high specificity. The tobacco vein mottling virus (TVMV) protease is a close relative of TEV protease with a distinct sequence specificity (ETVRFQG/S). We show that, like TEV protease, TVMV protease can be used to cleave fusion proteins with high specificity in vitro and in vivo. We compared the catalytic activity of the two enzymes as a function of temperature and ionic strength, using an MBP-NusG fusion protein as a model substrate. The behavior of TVMV protease was very similar to that of TEV protease. Its catalytic activity was greatest in the absence of NaCl, but diminished only threefold with increasing salt up to 200 mM. We found that the optimum temperatures of the two enzymes are nearly the same and that they differ only two-fold in catalytic efficiency, both at room temperature and 4 degrees C. Hence, TVMV protease may be a useful alternative to TEV protease when a recombinant protein happens to contain a sequence that is similar to a TEV protease recognition site or for protein expression strategies that involve the use of more than one protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号