首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

2.
An extracellular, debranching isoamylase fromHendersonula toruloidea ATCC 64930, grown on starch, was purified 12-fold to an electrophoretically homogeneous state. The purified enzyme (estimated mol wt 83000) was optimally active at pH 6.0 and 50°C and remained active when held at 70°C (30 min) and at pH 6 to 8 for 24 h. Na+, Fe2+ and Ba2+ (at 5mm) enhanced enzyme activity while Hg2+, Zn2+ and Cu2+ (at 5mm) were inhibitory. The enzyme hydrolysed amylopectin (Km, 0.25 mg/ml), forming maltose, maltotriose and maltotetraose and hydrolyzed glycogen (Km, 0.29 mg/ml) and soluble starch (Km, 0.42 mg/ml) forming maltotriose and maltotetraose. Pullulan was not hydrolyzed.  相似文献   

3.
An α‐amylase and a glucoamylase produced by Thermomyces lanuginosus F1 were separated by ion‐exchange chromatography on Q‐Sepharose fast flow. The enzymes were further purified to electrophoretic homogeneity by chromatography on Sephadex G‐100 and Phenyl‐Sepharose CL‐4B.The molecular weights and isoelectric points of the enzymes were 55,000 Da and pHi 4.0 for α‐amylase and 70,000 Da and pHi 4.0 for glucoamylase, respectively. The optimum pH and temperatures for the enzymes were found to be 5.0 and 60 °C for α‐amylase, and 6.0 and 70 °C for glucoamylase,respectively. Both enzymes were maximally stable at pH 4.0 and retained over 80% of their activity between pH 5.0 and 6.0 for 24 h. After incubation at 90 °C (1 h), the α‐amylase and glucoamylase retained only 6% and 16% of their activity, respectively. The enzymes readily hydrolyzed soluble starch, amylose, amylopectin and glycogen but hydrolyzed pullulan very slowly. Glucoamylase and α‐amylase had highest affinity for soluble starch with KM values of 0.80 mg/ml and 0.67 mg/ml, respectively. The α‐amylase hydrolyzed raw starch granules with a predominant production of glucose and maltose. The activities of α‐amylase and glucoamylase increased in the presence of Mn2+, Co2+, Ca2+, Zn2+ and Fe2+, but were inhibited by guanidine‐HCl, urea and disodium EDTA. Both enzymes possess pH and thermal stability characteristics that may be of technological significance.  相似文献   

4.
Characterization of glucoamylase from Lactobacillus amylovorus ATCC 33621   总被引:2,自引:0,他引:2  
Summary An intracellular glucoamylase, purified from Lactobacillus amylovorus, reacted selectively with polysaccharides. Kinetic studies indicated low affinity for maltose and maltotriose (Km 58 g/ml and 178 g/ml) and higher affinity for starch and dextrin (Km 0.01 g/ml and 0.02 g/ml). Glucoamylase was inhibited almost 50% by 10 mM glucose. Cu2+ and Pb2+ inhibited glucoamylase at 1.0 mM but EDTA and other metal chelators had no effect on the enzyme activity. Acarbose and Tris inhibited the enzyme by 84% and 98%, respectively at 1 mM, while iodoacetate and p-chloromecuribenzoic acid inhibited activity by 98% and 78%, respectively at 10 mM. The purified enzyme was thermolabile at temperatures greater than 55°C and thus has potential for application in the brewing industry.  相似文献   

5.
《Process Biochemistry》2010,45(5):694-699
An extracellular halophilic α-amylase from Nesterenkonia sp. strain F was purified to homogeneity by 80% ethanol precipitation, Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography, with a 10.8-fold increase in specific activity. The molecular mass of the amylase was estimated to be 100 kDa and 106 kDa by SDS–PAGE and gel filtration chromatography, respectively. The enzyme showed maximal activity at pH 7.5 and 45 °C. The amylase was active in a wide range of salt concentrations (0–4 M) with its maximum activity at 0.5 M NaCl or 1 M KCl and was stable at the salts concentrations between 1 M and 4 M. Fe3+, Cu2+, Zn2+ and Al3+ strongly inhibited the enzyme, whereas Ca2+ stimulated the amylase activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. The enzyme showed remarkable stability towards 0.5% SDS and sarcosyl, and 2% each of Triton X-100, Tween 80 and Tween 20. Km value of the amylase for soluble starch was 4.5 mg/ml. The amylase hydrolyzed 38% of raw wheat starch and 20% of corn starch in a period of 48 h. The major products of soluble starch hydrolysis were maltose, maltotriose and maltotetraose, indicating an α-amylase activity.  相似文献   

6.
An amylase was purified from the culture filtrate ofTermitomyces clypeatus by ammonium sulphate precipitation, DEAE-Sephadex chromatography and gel filtration on Bio-Gel P-200 column. The electrophoretically homogeneous preparation also exhibited hydrolytic activity (in a decreasing order) on amylose, xylan, amylopectin, glycogen, arabinogalactan and arabinoxylan. The enzyme had characteristically endo-hydrolytic activity on all the substrates tested and no xylose, glucose, arabinose or glucuronic acid could be detected even after prolonged enzymatic digestion of the polysaccharides. Interestingly the enzyme had similar pH optima (5.5), temperature optima (55°C), pH stability (pH 3–10) and thermal denaturation kinetics when acted on both starch and xylan (larch wood) .K m values were found to be 2.63 mg/ml for amylase and 6.25 mg/ml for xylanase activity. Hill’s plot also indicated that the enzyme contained a single active site for both activities. Hg2+ was found to be most potent inhibitor. Ca2+, a common activator for amylase activity, appeared to be an inhibitor for this enzyme. Thus it appeared that the enzyme had multisubstrate specificity acting as α-amylase on starch and also acting as xylanase on side chain oligosaccharides of xylan containing α-linked sugars.  相似文献   

7.
An extracellular amylase (AmyKS) produced by a newly isolated Bacillus subtilis strain US572 was purified and characterized. AmyKS showed maximal activity at pH 6 and 60°C with a half-life of 10 min at 70°C. It is a Ca2+ independent enzyme and able to hydrolyze soluble starch into oligosaccharides consisting mainly of maltose and maltotriose. When compared to the studied α-amylases, AmyKS presents a high affinity toward soluble starch with a Km value of 0.252 mg ml−1. Coupled with the size-exclusion chromatography data, MALDI–TOF/MS analysis indicated that the purified amylase is a dimer with a molecular mass of 136,938.18 Da. It is an unusual feature of a non-maltogenic α-amylase. A 3D model and a dimeric model of AmyKS were generated showing the presence of an additional domain suspected to be involved in the dimerization process. This dimer arrangement could explain the high substrate affinity and catalytic efficiency of this enzyme.  相似文献   

8.
An amylase which produces maltotriose from starch as the main product was found in the culture filtrate of a strain of Bacillus subtilis newly isolated from soil. The enzyme was purified to almost complete homogeneity, as judged by disc electrophoresis in polyacrylamide gel, by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex gel filtration.

The optimum pH and temperature of the enzyme were around 6~7 and 50°C, respectively. Metal ions such as Hg2+, Cu2+, Zn2+, Ni2+ and Fe2+ strongly inhibitied the enzyme activity. The molecular weight was found to be about 25,000 by gel filtration. The yields of maltotriose from short-chain amylose (DP 17), amylopectin, soluble starch and glycogen were about 69, 56, 56 and 40%, respectively.  相似文献   

9.
A maltose-limited chemostat culture was used to investigate the expression and excretion of amylopullulanase by Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E). In maltose-limited continuous culture, amylopullulanase was produced and secreted at tenfold higher levels than in batch culture. The extracellular amylopullulanase was purified to homonogeneity by using an inhibitor-linked affinity column matrix. The purified amylopullulanase had a specific activity of 480 units (U)/mg protein for pullulanase and 175 U/mg protein for -amylase. -Cyclodextrin inhibited both -amylase and pullulanase activities, with a substrate inhibition constant (K i) of 0.065 mg/ml.Amylopullulanase had a relative molecular mass (Mr) of 140 000 using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and an Mr of 133 000 using gel-filtration chromatography. The N-terminal sequence of the enzyme was Glu-Thr-Asp-Thr-Ala-Pro-Ala. The purified enzyme displayed Michaelis constant (K m) values of 0.35 mg/ml for pullulan and 1.00 mg/ml for amylose. The enzyme had an isoelectric point (pI) of 4.0, and displayed an optimum pH for stability and activity of 6.2 and 5.5, respectively. The enzyme was stable up to 85° C in the presence of Ca2+, and had a half-life of 40 min at 90° C (pH 6.2). Ca2+ was required for thermal stability, but not for activity. Amylose, glycogen, and amylopectin were degrade to maltose, maltotriose, and maltotetraose, whereas only maltotriose was formed from pullulan. Correspondence to: J. G. Zeikus  相似文献   

10.
An acidophilic and Ca2+-independent amylase was purified from a newly isolated Bacillus sp. DR90 by ion-exchange chromatography, and exhibited a molecular weight of 68.9 kDa by SDS-PAGE. The optimum pH and temperature of the enzyme were found to be 4.0 and 45 °C, respectively. The enzyme activity was increased by Ba2+, Fe2+ and Mg2+, and decreased by Hg2+ and Zn2+, while it was not affected by Na+, K+, phenylmethylsulfonyl fluoride and β-mercaptoethanol. Ca2+ and EDTA did not have significant effect on the enzyme activity and thermal stability. The values of K m and V max for starch as substrate were 4.5 ± 0.13 mg/ml and 307 ± 12 μM/min/mg, respectively. N,N-dialkylimidazolium-based ionic liquids such as 1-hexyl-3-methylimidazolium bromide [HMIM][Br] have inhibitory effect on the enzyme activity. Thin layer chromatography analyses displayed that maltose and glucose are the main products of the enzyme reaction on starch. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

11.
An extracellular glucose-forming amylase was produced by Lactobacillus brevis isolated from Kagasok tea. The enzyme was purified 70-fold and had optimal activity at 55°C and pH 6.5. Its K m value for starch was 0.27 mg ml-1 and its M r was approx. 75,900 Da. The activity of the enzyme was enhanced by Ca2+, Mg2+, Na+ or K+ and inhibited by EDTA, KCN, citric acid and l-cysteine.  相似文献   

12.
An actinomycete strain 7326 producing cold-adapted α-amylase was isolated from the deep sea sediment of Prydz Bay, Antarctic. It was identified as Nocardiopsis based on morphology, 16S rRNA gene sequence analysis, and physiological and biochemical characteristics. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining of purified amylase showed a single band equal to a molecular mass of about 55 kDa. The optimal activity temperature of Nocardiopsis sp. 7326 amylase was 35°C, and the activity decreased dramatically at temperatures above 45°C. The enzyme was stable between pH 5 and 10, and exhibited a maximal activity at pH 8.0. Ca2+, Mn2+, Mg2+, Cu2+, and Co2+ stimulated the activity of the enzyme significantly, and Rb2+, Hg2+, and EDTA inhibited the activity. The hydrolysates of soluble starch by the enzyme were mainly glucose, maltose, and maltotriose. This is the first report on the isolation and characterization of cold-adapted amylase from Nocardiopsis sp.  相似文献   

13.
A strain of endophytic fungus EF6 isolated from Thai medicinal plants was found to produce higher levels of extracellular glucoamylase. This strain produced glucoamylase of culture filtrate when grown on 1% soluble starch. The enzyme was purified and characterized. Purification steps involved (NH4)2SO4 precipitation, anion exchange, and gel filtration chromatography. Final purification fold was 14.49 and the yield obtained was 9.15%. The enzyme is monomeric with a molecular mass of 62.2 kDa as estimated by SDS-PAGE, and with a molecular mass of 62.031 kDa estimated by MALDI-TOF spectrometry. The temperature for maximum activity was 60°C. After 30 min for incubation, glucoamylase was found to be stable lower than 50°C. The activity decrease rapidly when residual activity was retained about 45% at 55°C. The pH optimum of the enzyme activity was 6.0, and it was stable over a pH range of 4.0–7.0 at 50°C. The activity of glucoamylase was stimulated by Ca2+, Co2+, Mg2+, Mn2+, glycerol, DMSO, DTT and EDTA, and strongly inhibited by Hg2+. Various types of starch were test, soluble starch proved to be the best substrate for digestion process. The enzyme catalyzes the hydrolysis of soluble starch and maltose as the substrate, the enzyme had K m values of 2.63, and 1.88 mg/ml and V max, values of 1.25, and 2.54 U/min/mg protein, and V max/K m values of 0.48 and 1.35, respectively. The internal amino acid sequences of endophytic fungus EF6 glucoamylase; RALAN HKQVV DSFRS have similarity to the sequence of the glucoamylase purified form Thermomyces lanuginosus. From all results indicated that this enzyme is a glucoamylase (1,4-α-D-glucan glucanohydrolase).  相似文献   

14.
An α-amylase which produces both maltotetraose and maltopentaose from starch as the main products was found in the culture filtrate of a strain of Bacillus circulans which was newly isolated from soil. The enzyme was purified to be almost homogeneous on disc electrophoresis in polyacrylamide gel by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex G-200 gel filtration.

The optimum pH and temperature of the enzyme were around pH 7.0 and around 50°C, respectively. Metal ions such as Hg2+, Cu2+, Ni2+, Zn2+, Fe2+ and Co2+ strongly inhibited the enzyme activity. The molecular weight was about 45,000. The yields of maltotetraose and maltopentaose from potato starch were 30 ~ 40% and 20 ~ 30%, respectively.  相似文献   

15.
Pea (Pisum sativum L.) chloroplast D-enzyme (4-α-d-glucanotransferase, EC 2.4. 1.25) was purified greater than 750-fold and partially characterized. It is a dimer with a subunit Mr of ca. 50,000. Optimal activity is between pH 7.5 and 8.0 with maltotriose as substrate and the enzyme's Km for maltotriose is 3.3 millimolar. Chloroplast D-enzyme converts maltotriose to maltopentaose and glucose via the exchange of α-1,4-glycosidic linkages. Maltotriose acts either as a donor or acceptor of a maltosyl group. The enzyme has highest activity with maltotriose as substrate. As initial substrate degree of polymerization is increased to maltoheptaose, D-enzyme activity drops to zero at 10 millimolar substrate concentrations and by 70% at 1 millimolar concentrations. The enzyme cannot use maltose as a substrate. Glucose was found to be a suitable acceptor substrate for this D-enzyme. Addition of glucose to incubation mixtures, or production of glucose by D-enzyme, prevents the synthesis of maltodextrins larger than maltopentaose. Removal of glucose produced by D-enzyme activity with maltotriose as substrate resulted in the synthesis of maltopentaose and maltodextrins with sufficient degrees of polymerization to be suitable substrates for pea chloroplast starch phosphorylase. The possible role of D-enzyme in pea chloroplast starch metabolism is discussed.  相似文献   

16.
We cloned the gene for an extracellular α-amylase, AmyE, from the hyperthermophilic bacterium Thermotoga neapolitana and expressed it in Escherichia coli. The molecular mass of the enzyme was 92 kDa as a monomer. Maximum activity was observed at pH 6.5 and temperature 75°C and the enzyme was highly thermostable. AmyE hydrolyzed the typical substrates for α-amylase, including soluble starch, amylopectin, and maltooli-gosaccharides. The hydrolytic pattern of AmyE was similar to that of a typical α-amylase; however, unlike most of the calcium (Ca2+)-dependent α-amylases, the activity of AmyE was unaffected by Ca2+. The specific activities of AmyE towards various substrates indicated that the enzyme preferred maltooligosaccharides which have more than four glucose residues. AmyE could not hydrolyze maltose and maltotriose. When maltoheptaose was incubated with AmyE at the various time courses, the products consisting of maltose through maltopentaose was evenly formed indicating that the enzyme acts in an endo-fashion. The specific activity of AmyE (7.4 U/mg at 75° C, pH 6.5, with starch as the substrate) was extremely lower than that of other extracellular α-amylases, which indicates that AmyE may cooperate with other highly active extracellular α-amylases for the breakdown of the starch or α-glucans into maltose and maltotriose before transport into the cell in the members of Thermotoga sp.  相似文献   

17.
The extremely thermophilic archaeon Thermococcus hydrothermalis, isolated from a deep-sea hydrothermal vent in the East Pacific Rise at 21°N, produced an extracellular pullulanase. This enzyme was purified 97-fold to homogeneity from cell-free culture supernatant. The purified pullulanase was composed of a single polypeptide chain having an estimated molecular mass of 110 kDa (gel filtration) or 128 kDa (sodium dodecyl sulfate/polyacryl amide gel electrophoresis). The enzyme showed optimum activity at pH 5.5 and 95 °C. The thermostability and the thermoactivity were considerably increased in the presence of Ca2+. The enzyme was activated by 2-mercaptoethanol and dithiothreitol, whereas N-bromosuccinimide and α-cyclodextrin were inhibitors. This enzyme was able to hydrolyze, in addition to the α-1,6-glucosidic linkages in pullulan, α-1,4-glucosidic linkages in amylose and soluble starch, and can therefore be classified as a type II pullulanase or an amylopullulanase. The purified enzyme displayed Michaelis constant (K m) values of 0.95 mg/ml for pullulan and 3.55 mg/ml for soluble starch without calcium and, in the presence of Ca2+, 0.25 mg/ml for pullulan and 1.45 mg/ml for soluble starch. Received: 19 November 1997 / Received revision: 9 March 1998 / Accepted: 14 March 1998  相似文献   

18.
ABacillus subtilis amylase gene was inserted into a plasmid which transferred toEscherichia coli. During cloning, a 3 region encoding 171 carboxyterminal amino acids was replaced by a nucleotide sequence that encoded 33 amino acid residues not present in the indigenous protein. The transformed cells produced substantial amylolytic activity. The active protein was purified to apparent homogeneity. Its molecular mass (48 kDa), as estimated in sodium dodecyl sulfate/polyacrylamide gel electrophoresis, was lower than the molecular mass values calculated from the derived amino acid sequences of theB. subtilis complete -amylase (57.7 kDa) and the truncated protein (54.1 kDa). This truncated enzyme form hydrolysed starch with aK m of 3.845 mg/ml. Activity was optimal at pH 6.5 and 50°C, and the purified enzyme was stable at temperatures up to 50°C. While Hg2+, Fe3+ and Al3+ were effective in inhibiting the truncated enzyme Mn2+ and Co2+ considerably enhanced the activity.  相似文献   

19.
Covalent immobilization of thermostable α-amylases from catabolite resistant and sensitive Bacillus licheniformis strains on controlled pore glass (CPG) and porous silica (Spherosil) beads and ionic binding on DEAE-cellulose, Amberlite and Dowex were investigated. Preparations with satisfactory operational stabilities and activities up to 1,600 U/g of support (ionic binding) and 800 U/g carrier (covalent coupling) were obtained. Immobilization led to a narrowing of the pH interval of maximum activity. The fixed amylases were stable in limited pH regions around the optimum pH level. An enhancement of the enzyme thermostability was observed. Apparent shifts of the optimum temperatures were not found. The apparent Vmax decreased up to 80 times. The Km′ remained unchanged (for amylopectin as the substrate) or increased up to 10 times (soluble starch). Maltose, maltotriose and maltopentaose were the main products of the hydrolysis. A significant increase in maltopentaose content was observed.  相似文献   

20.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号