首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetracycline resistance (Tcr) determinants from three different strains of Haemophilus parainfluenzae expressed 10-fold higher levels of resistance when mated into Escherichia coli. No plasmid was found in any of the E. coli recipients, even in matings in which a plasmid was identified in the donor Haemophilus sp. The Tcr determinant from Haemophilus sp. caused instability of resident plasmids in the recipient E. coli: all plasmids were lost within 30 generations in antibiotic-free media. However, by serial subculture in antibiotics, stable resident plasmids were obtained which carried the Tcr determinant from Haemophilus sp. and were transferable by conjugation and transformation among E. coli strains. All Haemophilus determinants hybridized with a probe for the Tcr determinant on Tn10, which bears inducible Tcr. However, Haemophilus determinants were constitutively resistant to tetracycline in the Haemophilus donors and in the E. coli recipients. This constitutive expression was recessive to wild-type Tn10 in the same cell, indicating that the constitutive phenotype resulted from the absence of an active repressor. Restrictive enzyme analysis of various E. coli plasmid derivatives bearing a Tcr determinant from Haemophilus sp. demonstrated that the inserted DNA was of similar size (8.95 to 9.35 kilobases), close to that of Tn10. Heteroduplex analysis and DNA:DNA hybridization confirmed that the Tcr determinant from Haemophilus sp. had greater than 90% homology with the Tn10 determinant, including the DNA sequence for the repressor.  相似文献   

2.
After coliphage P1-mediated transfer of Tn5-containing plasmid DNA from Escherichia coli to Myxococcus xanthus, transductants were identified which contained plasmid sequences integrated at many sites on the bacterial chromosome. The unaltered plasmid DNA sequences in these transductants were apparently flanked by intact Tn5 or IS50 sequences. These results suggest that Tn5-mediated transposition has occurred and provide a method for integrating plasmid DNA into the M. xanthus chromosome without the requirement for homologous recombination.  相似文献   

3.
Abstract A Tn 5 transposon mutagenesis system based on mobilization of the narrow-host-range plasmid pACYC184 from Escherichia coli by a chromosomally integrated promiscuous plasmid RP4 was found to be non-applicable to Pseudomonas aeruginosa recipients. Transposition following mobilization was based on cloning an RP4 DNA fragment (/ RP4 Mob) into pACYC184 and Tn 5 transposition into the fragment (/ RP4 Mob::Tn5). It was shown by DNA sub-cloning of RP4 Mob::Tn 5 on to a wide-host-range plasmid vector that mobilization was unaffected but that reduced survival of the vector or host following mobilization was responsible. However, mutagenesis was achieved by the provision of cloned RP4 Mob DNA in the P. aeruginosa recipients.  相似文献   

4.
C P Tu  S N Cohen 《Cell》1980,19(1):151-160
247 independent events involving insertion of the TN3 transposable element into a 4 kb constructed plasmid (pTU4) of partially known DNA sequence were studied by restriction endonuclease mapping, and 65 of these insertion sites were examined further by DNA sequence analysis. Our results show that the previously proposed regional specificity for Tn3 insertion is associated with a strong preference for AT-rich segments as insertion sites. Moreover, multiple insertions of the Tn3 occurred at certain AT-rich nucleotide positions, and 23 of 26 independent insertion events at a single nucleotide position were found to be in the same orientation. A region of the recipient plasmid showing major homology with the terminal 18 bp of Tn3 was identified in the vicinity of an 11 nucleotide segment that included three insertional hot spots and 36 independent insertions. Our results indicate that the site and orientation of insertion of Tn3 are at least partly determined by the primary nucleotide sequence of the recipient genome, and suggest that insertional hot spots may result from the combined effects of AT richness plus homology of the recipient genome with the terminal sequences of Tn3.  相似文献   

5.
Rhizobium meliloti carries two megaplasmids   总被引:16,自引:0,他引:16  
In Rhizobium meliloti strain 41 the existence of a second megaplasmid (pRme41c) with a molecular weight similar to the sym megaplasmid pRme41b was demonstrated. Derivatives of the wild-type strain carrying pRme41b or pRme41c tagged with Tn5 allowed the examination of the transfer ability of both megaplasmids. The introduction of megaplasmids into the wild-type R. meliloti was not detected, probably because of the action of plasmid genes coding for entry exclusion of the same type of plasmid. However, transmissibility of both megaplasmids was observed in matings with Nod- or Fix- pRme41b deletion mutant recipients and with Agrobacterium tumefaciens at frequencies of 10(-6) - 10(-8). Introduction of the megaplasmids into the R. meliloti recipients resulted in the loss of the same plasmid. On the other hand, pRme41b and pRme41c were compatible. From the extent of deletions in various Nod- and Fix- mutants a DNA region carrying genes probably involved in "surface exclusion" on pRme41b was located. This DNA region is about 50 kb distant from the nod genes and exhibits strong homology with a DNA segment of pRme41c. Symbiotic genes on pRme41c were not identified.  相似文献   

6.
K M Yen  M Sullivan  I C Gunsalus 《Plasmid》1983,9(2):105-111
Introduction of the transposon Tn5 to serve as a marker allows electron microscope heteroduplex mapping of the naphthalene oxidation genes on the approximately 83-kb NAH7 and the related approximately 85-kb SAL1 plasmids. The electron microscope-mapped gene positions on the NAH7 plasmid are in close agreement with those mapped previously by restriction digestion. The SAL1 plasmid can be considered as a mutant NAH7 plasmid which fails to direct the conversion of naphthalene to salicylate because of a mutational block but retains intact coding sequences for salicylate oxidation. Analysis of heteroduplex molecules formed between the SAL1 and NAH7::Tn5 EcoRI fragments and the known NAH7/SAL1 homology strongly suggest that the SAL1 DNA is completely homologous to NAH7 DNA except that a approximately 2.5-kb DNA segment constituting most of the nahA gene is replaced by approximately 4.6-kb nonhomologous DNA.  相似文献   

7.
Abstract A Tn7 insertion in the DNA primase gene of the promiscuous IncP-1 plasmid R18 specifically reduced plasmid conjugational transfer from Pseudomanas aeruginosa donors to Pseudomonas stutzeri recipients. The cloned primase gene was found to efficiently complement the mutation in both the donor and in the recipient suggesting that the primase is required for priming single-stranded plasmid DNA in the donor prior to its transit to the recipient where it is converted to the double- stranded form.  相似文献   

8.
A procedure is presented, that has allowed the rapid assignment of transposon Tn1 and Tn7 insertion sites in the large (130 Md) nopaline Ti-plasmid pTiC58, to specific restriction enzyme fragments. Total bacterial DNA is isolated from Agrobacterium tumefaciens strain C58 mutants that carry a transposon in their Ti-plasmid, and digested with an appropriate restriction endonuclease. The fragments are separated on an agarose gel, denatured and transferred to nitrocellulose filters. These are hybridized against purified wild type pTiC58, or against segments of PTiC58, cloned in E. coli using pBR322 as a vector plasmid. DNA sequences homologous to the probe are detected by autoradiography, thus generating a restriction enzyme pattern of the plasmid from a digest of total bacterial DNA. Mutant fragments can be readily identified by their different position compared to a wild type reference. This protocol eliminates the need to separate the large plasmid from chromosomal DNA for every mutant. In principle, it can be applied to the restriction enzyme analysis of insertion or deletion mutants in any plasmid that has no extensive homology with the chromosome.  相似文献   

9.
Development of a cloning system in Mycoplasma pulmonis   总被引:4,自引:0,他引:4  
G G Mahairas  C Jian  F C Minion 《Gene》1990,93(1):61-66
A system suitable for recombinant DNA manipulation in mycoplasmas was developed using the cloned antibiotic-resistance genes of Tn4001 and Tn916. An integrative plasmid containing one of the resistance markers was inserted into the genome of Mycoplasma pulmonis to form a recipient strain. This was accomplished by transformation and homologous recombination between chromosomal DNA sequences cloned onto the integrative plasmid. A second vector, the cloning vector, containing the same plasmid replicon and alternate resistance marker, carried cloned foreign DNA. When transformed into mycoplasmal recipients, homologous recombination between plasmid sequences resulted in integration of the cloning vector and foreign DNA. A Brucella abortus gene coding for a 31-kDa protein and the P1 structural gene and operon from Mycoplasma pneumoniae were introduced to examine the feasibility of developing mycoplasma as cloning hosts. Recombinant plasmids as large as 20 kb were inserted into M. pulmonis, and the integrated foreign DNA was stably maintained. The maximum size of clonable DNA was not determined, but plasmids larger than 22 kb have not been transformed into mycoplasmas using polyethylene glycol. Also the size of genome (800-1200 kb) may affect the stability of larger inserts of foreign DNA. This system is applicable to any mycoplasma capable of transformation, homologous recombination and expression of these resistance markers. Because of their lack of a cell wall, mycoplasmas may be useful cloning hosts for membrane or excreted protein genes from other sources.  相似文献   

10.
To improve transposon mutagenesis of antibiotic-producing Streptomyces, a mini-transposon, Tn1792, was constructed, based on IS6100, originally isolated from Mycobacterium fortuitum. Easily manageable transposition assays were developed to demonstrate inducible transposition of Tn1792 into the Streptomyces genome from a temperature-sensitive delivery plasmid. Introduction of the selectable aac1 gene between the inverted repeats in Tn1792 allowed for both reliable identification of transposition events in Streptomyces, and also subsequent cloning of transposon-tagged sequences in Escherichia coli. This enabled the target site specificity of Tn1792 to be determined at nucleotide resolution, revealing no significant shared homology between different target sites. Consequently, Tn1792 is well suited for random mutagenesis of Streptomyces.  相似文献   

11.
The broad-host-range IncP beta plasmid R751 can mobilize itself from Escherichia coli to Bacteroides spp, but it is not maintained in Bacteroides spp. If R751 carries the Bacteroides transposon Tn4351, it can be integrated into the Bacteroides chromosome. Previously we showed that R751, integrated in the chromosome of Bacteroides uniformis, cannot mobilize itself out of B. uniformis into E. coli or isogenic B. uniformis strains. In this report, we showed that if the Bacteroides conjugative tetracycline resistance element Tcr ERL was coresident with the R751 insertion in B. uniformis, derivatives of R751 were transferred to E. coli, where they were recovered as plasmids. The most common derivatives were R751::Tn4351 and R751::IS4351, but some strains transferred R751 derivatives, containing additional DNA segments ranging in size from 10 to 23 kilobases. These DNA inserts cross-hybridized with chromosomal DNA from B. uniformis which did not carry the Tcr ERL element. Therefore, the inserts appeared to be segments of the wild-type B. uniformis chromosome and were not associated with the Tcr ERL element. The transfer of integrated R751 from B. uniformis was independent of the RecA phenotype of the E. coli recipients and did not appear to be due to transfer of B. uniformis chromosomal DNA, followed by RecA-dependent recombination between homologous IS4351 sequences to form the resultant R751 plasmid derivatives. Consistent with this, no transfer of Tn4351 (associated with the cointegrated R751) from B. uniformis donors to isogenic B. uniformis recipients was detected (< 10(-8)). Our data support the hypothesis that R751 excises from the B. uniformis chromosome by recombination involving flanking Tn4351 or IS4351 sequences and forms nonreplicating circles. The mobilization of these circular forms out of B. uniformis to E.coli is then facilitated by the Tcr ERL element.  相似文献   

12.
DNA sequences that encode the tnpR genes and internal resolution (res) sites of transposons Tn21 and Tn501, and the res site and the start of the tnpR gene of Tn1721 have been determined. There is considerable homology between all three sequences. The homology between Tn21 and Tn501 extends further than that between Tn1721 and Tn501 (or Tn21), but in the homologous regions, Tn1721 is 93% homologous with Tn501, while Tn21 is only 72-73% homologous. The tnpR genes of Tn21 and Tn501 encode proteins of 186 amino acids which show homology with the tnpR gene product of Tn3 and with other enzymes that carry out site-specific recombination. However, in all three transposons, and in contrast to Tn3, the tnpR gene is transcribed towards tnpA gene, and the res site is upstream of both. The res site of Tn3 shows no obvious homology with the res regions of these three transposons. Just upstream of the tnpR gene and within the region that displays common homology between the three elements, there is a 50 bp deletion in Tn21, compared to the other two elements. A TnpR- derivative of Tn21 was complemented by Tn21, Tn501 and Tn1721, but not by Tn3.  相似文献   

13.
A series of intragenic DNA probes, encoding the major part of the transposase resolvase and inverted repeats of transposons Tn3, Tn21, and Tn2501, were used in hybridization assays for homologous DNA sequences in 18 transposons studied. The tnpA and tnpR probes detected extensive homology with Tn3-like and Tn21-like elements for 11 transposons. This high degree of homology was confirmed with the 38- and 48-base-pair inverted-repeat oligonucleotide probes of Tn3, Tn21, and Tn2501. The Southern-type gel hybridization experiments localized the tnpA-homologous sequences on the physical DNA maps constructed. The genetic and physical maps of the transposons were compared, as were their nucleic acid sequence homologies. These comparisons suggested a subfamily of mobile elements distinct from but related to the Tn21 group. Based on these results, an evolutionary model is proposed and a pedigree is presented for the genesis of multiresistance beta-lactamase transposons.  相似文献   

14.
As an alternative approach to genetic transfer and analysis, a novel integrable plasmid system was developed that should prove useful for mapping and cloning various genes in Staphylococcus aureus and other Gram-positive bacteria. The use of a restriction-deficient recipient strain and an improved protocol for protoplast plasmid transformation facilitated direct cloning of a recombinant plasmid (pPQ126) in S. aureus NCTC 8325-4. Plasmid pPQ126 (13.6 kb) is a novel, temperature-sensitive integrable plasmid containing genes encoding resistance to erythromycin and chloramphenicol (from plasmid pTV1ts), and resistance to gentamicin (from transposon Tn4001). When introduced into an appropriate recipient strain at the permissive temperature (30 degrees C), pPQ126 replicates autonomously. Integration of pPQ126 is directed into homologous chromosomal target sequences (chromosomal insertions of Tn551 or Tn4001) by growing a population of cells containing autonomous pPQ126 in the presence of gentamicin, erythromycin, and chloramphenicol at 39 degrees C (nonpermissive temperature). Elevated temperature both selects for and maintains pPQ126 as an integrated replicon. Integration of pPQ126 occurs at significantly reduced frequency in a recombination-deficient host, and does not occur in the absence of host chromosomal homology. Integrated pPQ126 excises from the chromosome under permissive conditions (30 degrees C), and excision results in derivatives of pPQ126 that harbour DNA of chromosomal origin.  相似文献   

15.
16.
S A Khan  R P Novick 《Plasmid》1980,4(2):148-154
The erythromycin resistance determinant of Staphylococcus aureus plasmid pI258 resides on a 5.3 kb transposon, Tn551. We have determined DNA sequences surrounding the junctions between the transposon and the flanking DNA in the wild-type plasmid, in an insertion into a second plasmid, and in two transposon-related deletions. The ends of the transposon consist of an inverted repeat of 40 base pairs flanked by a direct repeat of 5, thus placing the transposon in the same class as Tn3, IS2, Tn501, gamma delta, and bacteriophage Mu. Interestingly, we find that the terminal sequences of the 40 base pairs inverted repeat are very similar to the ends of Tn3, a transposon which one would not have expected to show any relation to Tn551. This result suggests common ancestry for Tn3 and Tn551. The inverted repeat sequence of Tn551 also contains (with one additional inserted base) the internal heptanucleotide sequence which has been found to be common to most of the transposable elements that generate 5-base pair direct repeat sequences.  相似文献   

17.
Characteristics of RP4 tellurite-resistance transposon Tn521   总被引:1,自引:0,他引:1  
A restriction map of the tellurite-resistance (Ter) transposon Tn521 (parent plasmid RP4Ter) was prepared. Five sites from RP4Ter, including the EcoRI origin, were found in pIN25::Tn521. Tn521 was inserted into a transferable 27.5 kb vector (pCU109) to make three different insertion mutants, in which the size of Tn521 was measured accurately at 4.5 kb. Unlike the Ter of IncHI2 plasmids, that of Tn521 in RP4Ter was non-inducible. Ter was expressed in five widely differing bacterial species to which RP4Ter was transferred from Escherichia coli. Electron micrographs of bacteria expressing the Ter of RP4Ter, H complex plasmids, and chromosomal mutants, all revealed similar tellurium metal crystallites when the bacteria were grown in potassium tellurite medium. No other Ter determinants were found amongst 54 plasmids representing most incompatibility groups (excluding the H complex).  相似文献   

18.
We report that the streptococcal resistance transposon, Tn916, is conjugally transferred to Clostridium tetani (Utrecht) in intergenic matings. Streptococcus faecalis CG180, harboring a 41-kb plasmid (pAM180) containing Tn916 (15 kb), transferred the transposon-associated tetracycline resistance (Tcr) to C. tetani in filter matings at a frequency of about 10(-4)/donor. An erythromycin resistance marker carried by pAM180 was not transferred, indicating lack of plasmid conjugation or stable inheritance of plasmid sequences. DNA extracted from C. tetani transconjugants was probed with radiolabeled Tn916 using Southern blot analysis and these results indicated that the transposon integrated at multiple host genomic sites. Tn916-carrying C. tetani strains were able to transfer Tcr to suitable recipient strains of C. tetani as well as to S. faecalis recipients. These results indicate that this transposon is able to be disseminated and expressed in obligately anaerobic gram-positive bacteria. Moreover, this system opens avenues for the implementation of transposon mutagenesis in this important pathogenic species.  相似文献   

19.
Tn4371, a 55-kb transposable element involved in the degradation and biphenyl or 4-chlorobiphenyl identified in Ralstonia eutropha A5, displays a modular structure including a phage-like integrase gene (int), a Pseudomonas-like (chloro)biphenyl catabolic gene cluster (bph), and RP4- and Ti-plasmid-like transfer genes (trb) (C. Merlin, D. Springael, and A. Toussaint, Plasmid 41:40-54, 1999). Southern blot hybridization was used to examine the presence of different regions of Tn4371 in a collection of (chloro)biphenyl-degrading bacteria originating from different habitats and belonging to different bacterial genera. Tn4371-related sequences were never detected on endogenous plasmids. Although the gene probes containing only bph sequences hybridized to genomic DNA from most strains tested, a limited selection of strains, all beta-proteobacteria, displayed hybridization patterns similar to the Tn4371 bph cluster. Homology between Tn4371 and DNA of two of those strains, originating from the same area as strain A5, extended outside the catabolic genes and covered the putative transfer region of Tn4371. On the other hand, none of the (chloro)biphenyl degraders hybridized with the outer left part of Tn4371 containing the int gene. The bph catabolic determinant of the two strains displaying homology to the Tn4371 transfer genes and a third strain isolated from the A5 area could be mobilized to a R. eutropha recipient, after insertion into an endogenous or introduced IncP1 plasmid. The mobilized DNA of those strains included all Tn4371 homologous sequences previously identified in their genome. Our observations show that the bph genes present on Tn4371 are highly conserved between different (chloro)biphenyl-degrading hosts, isolated globally but belonging mainly to the beta-proteobacteria. On the other hand, Tn4371-related mobile elements carrying bph genes are apparently only found in isolates from the environment that provided the Tn4371-bearing isolate A5.  相似文献   

20.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号