首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism by which Decapentaplegic (Dpp) and its antagonist Short gastrulation (Sog) specify the dorsoventral pattern in Drosophila embryos has been proposed to have a common origin with the mechanism that organizes the body axis in the vertebrate embryo. However, Drosophila Sog makes only minor contributions to the development of ventral structures that hypothetically correspond to the vertebrate dorsum where the axial notochord forms. In this study, we isolated a homologue of the Drosophila sog gene in the spider Achaearanea tepidariorum, and characterized its expression and function. Expression of sog mRNA initially appeared in a radially symmetrical pattern and later became confined to the ventral midline area, which runs axially through the germ band. RNA interference-mediated depletion of the spider sog gene led to a nearly complete loss of ventral structures, including the axial ventral midline and the central nervous system. This defect appeared to be the consequence of dorsalization of the ventral region of the germ band. By contrast, the extra-embryonic area formed normally. Furthermore, we showed that embryos depleted for a spider homologue of dpp failed to break the radial symmetry, displaying evenly high levels of sog expression except in the posterior terminal area. These results suggest that dpp is required for radial-to-axial symmetry transformation of the spider embryo and sog is required for ventral patterning. We propose that the mechanism of spider ventral specification largely differs from that of the fly. Interestingly, ventral specification in the spider is similar to the process in vertebrates in which the antagonism of Dpp/BMP signaling plays a central role in dorsal specification.  相似文献   

2.
3.
The appendages of the adult fruit fly and other insects and Arthropods develop from secondary embryonic fields that form after the primary anterior/posterior and dorsal/ventral axes of the embryo have been determined. In Drosophila, the position and fate of the different fields formed within each segment are determined by genes acting along both embryonic axes, within individual segments, and within specific fields. Since the major architectural differences between most Arthropod classes and orders involve variations in the number, type and morphology of body appendages, the elucidation of the embryology and molecular genetics of the origin and patterning of insect limb fields may help to facilitate an understanding of both the mechanism of appendage formation and some of the major steps in the morphological evolution of the Arthropods. In this review, we will discuss recent studies that have advanced our understanding of both the origin and patterning of Drosophila leg and wing secondary fields. These results provide fresh insights into potentially general mechanisms of how body parts develop and evolve.  相似文献   

4.
The Wnt genes encode secreted glycoprotein ligands that regulate many developmental processes from axis formation to tissue regeneration [1]. In bilaterians, there are at least 12 subfamilies of Wnt genes [2]. Wnt3 and Wnt8 are required for somitogenesis in vertebrates [3-7] and are thought to be involved in posterior specification in deuterostomes in general [8]. Although TCF and beta-catenin have been implicated in the posterior patterning of some short-germ insects [9, 10], the specific Wnt ligands required for posterior specification in insects and other protostomes remained unknown. Here we investigated the function of Wnt8 in a chelicerate, the common house spider Achaearanea tepidariorum[11]. Knockdown of Wnt8 in Achaearanea via parental RNAi caused misregulation of Delta, hairy, twist, and caudal and resulted in failure to properly establish a posterior growth zone and truncation of the opisthosoma (abdomen). In embryos with the most severe phenotypes, the entire opisthosoma was missing. Our results suggest that in the spider, Wnt8 is required for posterior development through the specification and maintenance of growth-zone cells. Furthermore, we propose that Wnt8, caudal, and Delta/Notch may be parts of an ancient genetic regulatory network that could have been required for posterior specification in the last common ancestor of protostomes and deuterostomes.  相似文献   

5.
The dorsoventral axis of the Drosophila embryo is defined by a ventral signal that arises within the perivitelline space, an extracellular compartment between the embryo plasma membrane and the vitelline membrane layer of the eggshell. Production of the ventral signal requires four members of the serine protease family, including a large modular protein with a protease domain encoded by the nudel gene. Here we provide evidence that the Nudel protease has an integral role in eggshell biogenesis. Mutations in nudel that disrupt Nudel protease function produce eggs having vitelline membranes that are abnormally permeable to the dye neutral red. Permeability varies among mutant nudel alleles but correlates with levels of Nudel protease catalytic activity and function in embryonic dorsoventral patterning. These mutations also block cross-linking of vitelline membrane proteins that normally occurs upon egg activation, just prior to fertilization. In addition, Nudel protease autoactivation temporally coincides with vitelline membrane cross-linking and can be triggered in mature eggs in vitro by conditions that lead to egg activation. We discuss how the Nudel protease might be involved in both eggshell biogenesis and embryonic patterning.  相似文献   

6.
7.
Mutations at the short gastrulation locus affect the timing of certain early morphogenetic events occurring during gastrulation in Drosophila melanogaster. Specifically, the invagination and subsequent closing of the posterior midgut and the anterior midgut appear to be delayed in these embryos. In addition, their germbands do not extent the full distance anteriorly on the dorsal side of the embryo. The dorsal cells are abnormally thick and fall into extremely deep dorsal folds as the germband extends. sog embryos continue development, but form disorganized first instar larvae. Normal sog expression is required in the zygote, but not in the mother for normal embryonic development and viability. Analysis of adult and larval gynandromorphs indicates that sog expression is required only in the ventral and/or anterior and posterior ends of the embryo, arguing that the dorsal abnormalities caused by the mutation are secondary consequences of defects elsewhere in mutant embryos.  相似文献   

8.
Embryonic development depends on the establishment of polarities which define the axial characteristics of the body. In a small number of cases such as the embryo of the fly drosophila, developmental axes are established well before fertilization while in other organisms such as the nematode worm C. elegans these axes are set up only after fertilization. In most organisms the egg posesses a primary (A-V, Animal-Vegetal) axis acquired during oogenesis which participates in the establishment of the embryonic axes. Such is the case for the eggs of ascidians or the frog Xenopus whose AV axes are remodelled by sperm entry to yield the embryonic axes. Embryos of different species thus acquire an anterior end and a posterior end (Antero-Posterior, A-P axis), dorsal and ventral sides (D-V axis) and then a left and a right side.  相似文献   

9.
Spiders belong to the chelicerates, which is a basal arthropod group. To shed more light on the evolution of the segmentation process, orthologs of the Drosophila segment polarity genes engrailed, wingless/Wnt and cubitus interruptus have been recovered from the spider Cupiennius salei. The spider has two engrailed genes. The expression of Cs-engrailed-1 is reminiscent of engrailed expression in insects and crustaceans, suggesting that this gene is regulated in a similar way. This is different for the second spider engrailed gene, Cs-engrailed-2, which is expressed at the posterior cap of the embryo from which stripes split off, suggesting a different mode of regulation. Nevertheless, the Cs-engrailed-2 stripes eventually define the same border as the Cs-engrailed-1 stripes. The spider wingless/Wnt genes are expressed in different patterns from their orthologs in insects and crustaceans. The Cs-wingless gene is expressed in iterated stripes just anterior to the engrailed stripes, but is not expressed in the most ventral region of the germ band. However, Cs-Wnt5-1 appears to act in this ventral region. Cs-wingless and Cs-Wnt5-1 together seem to perform the role of insect wingless. Although there are differences, the wingless/Wnt-expressing cells and en-expressing cells seem to define an important boundary that is conserved among arthropods. This boundary may match the parasegmental compartment boundary and is even visible morphologically in the spider embryo. An additional piece of evidence for a parasegmental organization comes from the expression domains of the Hox genes that are confined to the boundaries, as molecularly defined by the engrailed and wingless/Wnt genes. Parasegments, therefore, are presumably important functional units and conserved entities in arthropod development and form an ancestral character of arthropods. The lack of by engrailed and wingless/Wnt-defined boundaries in other segmented phyla does not support a common origin of segmentation.  相似文献   

10.
The short gastrulation (sog) and decapentaplegic (dpp) genes function antagonistically in the early Drosophila zygote to pattern the dorsoventral (DV) axis of the embryo. This interplay between sog and dpp determines the extent of the neuroectoderm and subdivides the dorsal ectoderm into two territories. Here, we present evidence that sog and dpp also play opposing roles during oogenesis in patterning the DV axis of the embryo. We show that maternally produced Dpp increases levels of the I(kappa)B-related protein Cactus and reduces the magnitude of the nuclear concentration gradient of the NF(kappa)B-related Dorsal protein, and that Sog limits this effect. We present evidence suggesting that Dpp signaling increases Cactus levels by reducing a signal-independent component of Cactus degradation. Epistasis experiments reveal that sog and dpp act downstream of, or in parallel to, the Toll receptor to reduce translocation of Dorsal protein into the nucleus. These results broaden the role previously defined for sog and dpp in establishing the embryonic DV axis and reveal a novel form of crossregulation between the NF(kappa)B and TGF(beta) signaling pathways in pattern formation.  相似文献   

11.
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.  相似文献   

12.
13.
Early neurogenesis in the spider is characterised by a stereotyped pattern of sequential recruitment of neural cells from the neuroectoderm, comparable with neuroblast formation in Drosophila: However, in contrast to Drosophila, where single cells delaminate from the neuroectoderm, groups of cells adopt the neural fate and invaginate into the spider embryo. This raises the question of whether Delta/Notch signalling is involved in this process, as this system normally leads to a singling out of individual cells through lateral inhibition. I have therefore cloned homologues of Delta and Notch from the spider Cupiennius salei and studied their expression and function. The genes are indeed expressed during the formation of neural cells in the ventral neuroectoderm. Loss of function of either gene leads to an upregulation of the proneural genes and an altered morphology of the neuroectoderm that is comparable with Delta and Notch mutant phenotypes in Drosophila: Thus, although Delta/Notch signalling appears to be used in the same way as in Drosophila, the lateral inhibition process produces clusters of invaginating cells, rather than single cells. Intriguingly, neuroectodermal cells that are not invaginating seem to become neural cells at a later stage, while the epidermal cells are derived from lateral regions that overgrow the neuroectoderm. In this respect, the neuroectodermal region of the spider is more similar to the neural plate of vertebrates, than to the neuroectoderm of Drosophila:  相似文献   

14.
The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of the neuroblasts that form these neuromeres are quite well understood. Owing to the much higher complexity and hidden segmental organization of the brain, our understanding of its development is still rudimentary. Recent investigations on the expression and function of proneural genes, segmentation genes, dorsoventral-patterning genes and a number of other genes have provided new insight into the principles of neuroblast formation and patterning during embryonic development of the fly brain. Comparisons with the same processes in the trunk help us to understand what makes the brain different from the ventral nerve cord. Several parallels in early brain patterning between the fly and the vertebrate systems have become evident.  相似文献   

15.
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.  相似文献   

16.
In the past few years it has become apparent that the anterior/posterior (A/P) and dorsal/ventral (D/V) compartmant boundaries serve as the source of longrange signals that organize the A/P and D/V axes of the Drosophila wing. Recent work suggests that the vestigial gene may function as a nodal point through which the growth-controlling activity of these two patterning systems is integrated(1).  相似文献   

17.
Genetic analyses in Drosophila have demonstrated that a transmembrane protein Dispatched (Disp) is required for the release of lipid-modified Hedgehog (Hh) protein from Hh secreting cells. Analysis of Disp1 null mutant embryos has demonstrated that Disp1 plays a key role in hedgehog signaling in the early mouse embryo. Here we have used a hypomorphic allele in Disp1(Disp1(Delta)(2)), to extend our knowledge of Disp1 function in Hh-mediated patterning of the mammalian embryo. Through genetic combinations with null alleles of patched 1 (Ptch1), sonic hedgehog (Shh) and Indian hedgehog (Ihh), we demonstrate that Disp1 genetically interacts with Hh signaling components. As Disp1 activity is decreased we see a progressive increase in the severity of hedgehog-dependent phenotypes, which is further enhanced by reducing hedgehog ligand levels. Analysis of neural tube patterning demonstrates a progressive loss of ventral cell identities that most likely reflects decreased Shh signaling as Disp1 levels are attenuated. Conversely, increasing available Shh ligand by decreasing Ptch1 dosage leads to the restoration of ventral cell types in Disp1(Delta2/Delta2) mutants. Together, these studies suggest that Disp1 actively regulates the levels of hedgehog ligand that are available to the hedgehog target field. Further, they provide additional support for the dose-dependent action of Shh signaling in patterning the embryo. Finally, in-vitro studies on Disp1 null mutant fibroblasts indicate that Disp1 is not essential for membrane targeting or release of lipid-modified Shh ligand.  相似文献   

18.
LeMosy EK  Leclerc CL  Hashimoto C 《Genetics》2000,154(1):247-257
The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号