首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MERRF (myoclonic epilepsy with ragged-red fibers) is a severe, multisystem disorder characterized by myoclonus, seizures, progressive cerebellar syndrome, muscle weakness, and the presence of ragged-red fibers in the muscle biopsy. MERRF is associated with heteroplasmic point mutations, either A8344G or T8356C, in the gene encoding the mitochondrial tRNALys. The human ro cell system was utilized to examine the phenotypic consequences of these mutations, and to investigate their molecular genetic causes. Wild-type and mutant transmitochondrial cell lines harboring a pathogenic point mutation at either A8344G or T8356C in the human mitochondrial tRNALys gene were isolated and examined. Mitochondrial transformants containing 100% mutated mitochondrial DNAs (mtDNAs) exhibited severe defects in respiratory chain activity, in the rates of protein synthesis, and in the steady-state levels of mitochondrial translation products as compared with mitochondrial transformants containing 100% wild-type mtDNAs. In addition, both mutant cell lines exhibited the presence of aberrant mitochondrial translation products. These results demonstrate that two different mtDNA point mutations in tRNALys result in fundamentally identical defects at the cellular level, and that these specific protein synthesis abnormalities contribute to the pathogenesis of MERRF. (Mol Cell Biochem 174: 215–219, 1997)  相似文献   

2.
We investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA(Lys) gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to that in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA(Lys) is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype.  相似文献   

3.
In the present work, we demonstrate the possibility of using human blood platelets as mitochondrial donors for the repopulation of mtDNA-less (rho 0) cells. The noninvasive nature of platelet isolation, combined with the prolonged viability of platelet mitochondria and the simplicity and efficiency of the mitochondria-transfer procedure, has substantially increased the applicability of the rho 0 cell transformation approach for mitochondrial genetic analysis and for the study of mtDNA-linked diseases. This approach has been applied to platelets from several normal human individuals and one individual affected by the myoclonic-epilepsy-and-ragged-red-fibers (MERRF) encephalomyopathy. A certain variability in respiratory capacity was observed among the platelet-derived rho 0 cell transformants from a given normal subject, and it was shown to be unrelated to their mtDNA content. The results of sequential transfer of mitochondria from selected transformants into a rho 0 cell line different from the first rho 0 acceptor strongly suggest that this variability reflected, at least in part, differences in nuclear gene content and/or activity among the original recipient cells. A much greater variability in respiratory capacity was observed among the transformants derived from the MERRF patient and was found to be related to the presence and amount of the mitochondrial tRNALys mutation associated with the MERRF syndrome. An analysis of the relationship between proportion of mtDNA carrying the MERRF mutation and degree of respiratory activity in various transformants derived from the MERRF patient revealed an unusual complementation behavior of the tRNALys mutation, possibly reflecting the distribution of mutant mtDNA among the platelet mitochondria.  相似文献   

4.
A large MERRF pedigree permitted the direct testing of the predictions for a mitochondrial DNA (mtDNA) mutation. A mtDNA mutation was demonstrated by proving maternal inheritance and by identifying specific deficiencies in muscle energetics and mitochondrial respiratory complexes I and IV. mtDNA heteroplasmy (a mixture of mutant and wild-type mtDNAs) was demonstrated by showing variation in the mitochondrial energetic capacity between family members. The phenotypic consequences of differential tissue-specific reliance on mitochondrial ATP was shown by correlating individual respiratory deficiency with the nature and severity of patients' clinical manifestations. The observed spectrum of clinical manifestations resulting from this heteroplasmic mtDNA mutation implies that mtDNA disease may be much more prevalent than previously anticipated.  相似文献   

5.
An A to G transition mutation at nucleotide pair 8344 in human mitochondrial DNA (mtDNA) has been identified as the cause of MERRF. The mutation alters the T psi C loop of the tRNA(Lys) gene and creates a CviJI restriction site, providing a simple molecular diagnostic test for the disease. This mutation was present in three independent MERRF pedigrees and absent in 75 controls, altered a conserved nucleotide, and was heteroplasmic. All MERRF patients and their less-affected maternal relatives had between 2% and 27% wild-type mtDNAs and showed an age-related association between genotype and phenotype. This suggests that a small percentage of normal mtDNAs has a large protective effect on phenotype. This mutation provides molecular confirmation that some forms of epilepsy are the result of deficiencies in mitochondrial energy production.  相似文献   

6.
Chen HF  Chen CY  Lin TH  Huang ZW  Chi TH  Ma YS  Wu SB  Wei YH  Hsieh M 《The FEBS journal》2012,279(16):2987-3001
Mitochondrial DNA (mtDNA) mutations are associated with a large number of neuromuscular diseases. Myoclonus epilepsy with ragged-red fibers (MERRF) syndrome is a mitochondrial disease inherited through the maternal lineage. The most common mutation in MERRF syndrome, the A8344G mutation of mtDNA, is associated with severe defects in mitochondrial protein synthesis, which impair the assembly and function of the respiratory chain. We have previously shown that there is a decreased level of heat shock protein 27 (HSP27) in lymphoblastoid cells derived from a MERRF patient and in cytoplasmic hybrids (cybrids) harboring the A8344G mutation of mtDNA. In the present study, we found a dramatic decrease in the level of phosphorylated HSP27 (p-HSP27) in the mutant cybrids. Even though the steady-state level of p-HSP27 was reduced in the mutant cybrids, normal phosphorylation and dephosphorylation were observed upon exposure to stress, indicating normal kinase and phosphatase activities. To explore the roles that p-HSP27 may play, transfection experiments with HSP27 mutants, in which three specific serines were replaced with alanine or aspartic acid, showed that the phosphomimicking HSP27 desensitized mutant cybrids to apoptotic stress induced by staurosporine (STS). After heat shock stress, p-HSP27 was found to enter the nucleus immediately, and with a prolonged interval of recovery, p-HSP27 returned to the cytoplasm in wild-type cybrids but not in mutant cybrids. The translocation of p-HSP27 was correlated with cell viability, as shown by the increased number of apoptotic cells after p-HSP27 returned to the cytoplasm. In summary, our results demonstrate that p-HSP27 provides significant protection when cells are exposed to different stresses in the cell model of MERRF syndrome. Therapeutic agents targeting anomalous HSP27 phosphorylation might represent a potential treatment for mitochondrial diseases.  相似文献   

7.
Determination of mitochondrial DNA (mtDNA) heteroplasmy for the diagnosis of patients with mitochondrial disorders is a difficult task due to the coexistence of wild-type and mutant genomes. We have developed a new method for genotyping and quantification of heteroplasmic point mutations in mtDNA based on the SNaPshot technology. We compared the data of this method with the widely used "last hot-cycle" PCR-RFLP method by studying 15 patients carrying mtDNA mutations. We showed that SNaPshot is an accurate, reproducible, and sensitive technique for the determination of heteroplasmic mtDNA mutations in different tissues from patients, and it is a promising system to be used in prenatal and postnatal diagnosis of mtDNA-associated disorders.  相似文献   

8.
9.
An A to G transition at nucleotide position 8,344 in tRNALys of mitochondrial DNA has been recently identified as a causative mutation of myoclonus epilepsy associated with ragged-red fibers (MERRF). To investigate if the degree of heteroplasmy of mitochondrial DNA is correlated with the severity of MERRF, we have developed a novel method for quantitation of the mutant mitochondrial DNA by polymerase chain reaction using a mismatched primer. With the method, populations of mutant mtDNAs from 5 cases of MERRF carrying the tRNALys mutation were analyzed. The tight linkage of the severity of symptoms and the degree of heteroplasmies is not necessarily observed for all cases, though there is a tendency that patients with less wild type mtDNAs show severer clinical symptoms and earlier onset.  相似文献   

10.
11.
Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A--G transition at mtDNA nt 8344, within a conserved region of the tRNA(Lys) gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. We have sequenced the tRNA(Lys) gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T-->C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T psi C stem. The mutant mtDNA population was essentially homoplasmic in muscle but was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA(Lys) alterations may play a specific role in the pathogenesis of MERRF syndrome.  相似文献   

12.
Mutations in the mitochondrial DNA can lead to the development of mitochondrial diseases such as Myoclonic Epilepsy with Ragged Red Fibers (MERRF) or Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). We first show that human 143B-derived cybrid cells harboring either the A8344G (MERRF) or the A3243G (MELAS) mutation, are more prone to undergo apoptosis then their wild-type counterpart, when challenged with various apoptotic inducers such as staurosporine, etoposide and TRAIL. In addition, investigating the mechanisms underlying A8344G cybrid cells hypersensitivity to staurosporine-induced cell death, we found that staurosporine treatment activates caspases independently of cytochrome c release in both wild-type and mutated cells. Caspases are activated, at least partly, through the activation of calcium-dependent calpain proteases, a pathway that is more strongly activated in mutated cybrid cells than in wild-type cells exposed to staurosporine. These results suggest that calcium homeostasis perturbation induced by mitochondrial dysfunction could predispose cells to apoptosis, a process that could take part into the progressive cell degeneration observed in MERRF syndrome, and more generally in mitochondrial diseases.  相似文献   

13.
14.
Mitochondrial DNA (mtDNA) is a multicopy, maternally inherited, genome. Individuals frequently carry a mixture of genetically distinct mtDNA molecules whose proportions may vary between sexual generations or among tissues from the same individual. Analyses of the genetic composition of mitochondria have previously relied on electron microscopy and have not permitted the genotype of single mitochondria to be determined. We have developed flow cytometry techniques to isolate single mitochondrial particles and PCR-based assays to determine the mtDNA copy number and composition of individual particles. In a first application of this method, we studied mitochondrial particles from fibroblast cells heteroplasmic for the tRNA lys(8344) point mutation, associated with myoclonus epilepsy and ragged red fiber (MERRF). Individual mitochondrial particles contained between 0 and 11 mtDNA molecules with a mean of 2.0 (95% CI 1.6-2.4). The majority (75%) of the mitochondrial particles from which a PCR product was obtained contained only one type of mtDNA, consistent with the low mean mtDNA copy number. The method developed may be applied to studies of the copy number and distribution of mtDNA genomes in different cell types.  相似文献   

15.
Two cell lines were used for determination of whether interaction occurred between different types of respiration-deficient mitochondria. One was a respiration-deficient rho- cell line having mutant mitochondrial DNA (mtDNA) with a 5,196-base pair deletion including five tRNA genes (tRNAGly, Arg, Ser(AGY), Leu(CUN), His), DeltamtDNA5196, causing Kearns-Sayre syndrome. The other was a respiration-deficient syn- cell line having mutant mtDNA with an A to G substitution at 4,269 in the tRNAIle gene, mtDNA4269, causing fatal cardiomyopathy. The occurrence of mitochondrial interaction was examined by determining whether cybrids constructed by fusion of enucleated rho- cells with syn- cells became respiration competent by exchanging their tRNAs. No cybrids were isolated in selection medium, where only respiration-competent cells could survive, suggesting that no interaction occurred, or that it occurred so slowly that sufficient recovery of mitochondrial respiratory function was not attained by the time of selection. The latter possibility was confirmed by the observations that heteroplasmic cybrids with both mutant mtDNA4269 and DeltamtDNA5196 isolated without selection showed restored mitochondrial respiration activity. This demonstration of transcomplementation between different respiration-deficient mitochondria will help in understanding the relationship between somatic mutant mtDNAs and the roles of such mutations in aging processes.  相似文献   

16.
17.
We previously showed that in mitochondrial tRNA(Lys) with an A8344G mutation responsible for myoclonus epilepsy associated with ragged-red fibers (MERRF), a subgroup of mitochondrial encephalomyopathic diseases, the normally modified wobble base (a 2-thiouridine derivative) remains unmodified. Since wobble base modifications are essential for translational efficiency and accuracy, we used mitochondrial components to estimate the translational activity in vitro of purified tRNA(Lys) carrying the mutation and found no mistranslation of non-cognate codons by the mutant tRNA, but almost complete loss of translational activity for cognate codons. This defective translation was not explained by a decline in aminoacylation or lowered affinity toward elongation factor Tu. However, when direct interaction of the codon with the mutant tRNA(Lys) defective anticodon was examined by ribosomal binding analysis, the wild-type but not the mutant tRNA(Lys) bound to an mRNA- ribosome complex. We therefore concluded that the anticodon base modification defect, which is forced by the pathogenic point mutation, disturbs codon- anticodon pairing in the mutant tRNA(Lys), leading to a severe reduction in mitochondrial translation that eventually could result in the onset of MERRF.  相似文献   

18.
In the present work, a large scale investigation was done regarding the capacity of cultured human cell lines (carrying in homoplasmic form either the mitochondrial tRNA(Lys) A8344G mutation associated with the myoclonic epilepsy and ragged red fiber (MERRF) encephalomyopathy or a frameshift mutation, isolated in vitro, in the gene for the ND4 subunit of NADH dehydrogenase) to undergo transcomplementation of their recessive mitochondrial DNA (mtDNA) mutations after cell fusion. The presence of appropriate nuclear drug resistance markers in the two cell lines allowed measurements of the frequency of cell fusion in glucose-containing medium, non-selective for respiratory capacity, whereas the frequency of transcomplementation of the two mtDNA mutations was determined by growing the same cell fusion mixture in galactose-containing medium, selective for respiratory competence. Transcomplementation of the two mutations was revealed by the re-establishment of normal mitochondrial protein synthesis and respiratory activity and by the relative rates synthesis of two isoforms of the ND3 subunit of NADH dehydrogenase. The results of several experiments showed a cell fusion frequency between 1.4 and 3.4% and an absolute transcomplementation frequency that varied between 1.2 x 10(-5) and 5.5 x 10(-4). Thus, only 0.3-1.6% of the fusion products exhibited transcomplementation of the two mutations. These rare transcomplementing clones were very sluggish in developing, grew very slowly thereafter, and showed a substantial rate of cell death (22-28%). The present results strongly support the conclusion that the capacity of mitochondria to fuse and mix their contents is not a general intrinsic property of these organelles in mammalian cells, although it may become activated in some developmental or physiological situations.  相似文献   

19.
Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome. To enable analysis of this mutation in control nuclear backgrounds, two different cell lines were transformed with mitochondria carrying NARP mutant mitochondrial DNA. Transformant cell lines had decreased ATP synthesis capacity, and many also had abnormally high levels of two ATP synthase sub-complexes, one of which was F(1)-ATPase. A combination of metabolic labeling and immunoblotting experiments indicated that assembly of ATP synthase was slowed and that the assembled holoenzyme was unstable in cells carrying NARP mutant mitochondrial DNA compared with control cells. These findings indicate that altered assembly and stability of ATP synthase are underlying molecular defects associated with the NARP mutation in subunit 6 of ATP synthase, yet intrinsic enzyme activity is also compromised.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号