首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased iron stores are associated with free radical generation and carcinogenesis. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of tumor initiation. Melatonin and structurally related indoles are effective in protecting against oxidative stress. The aim of the study was to compare the relative efficacies of melatonin, N-acetylserotonin (NAS), indole-3-propionic acid (IPA), and 5-hydroxy-indole-3-acetic acid (5HIAA) in altering basal and iron-induced lipid peroxidation in homogenates of hamster testes. To determine the effect of the indoles on the autoxidation of lipids, homogenates were incubated in the presence of each agent in concentrations of 0.0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 2.5, or 5.0 mM. To study their effects on induced lipid peroxidation, homogenates were incubated with FeSO(4) (30 microM + H(2)O(2) (0.1 mM) + each of the indoles in the same concentrations as above. The degree of lipid peroxidation was expressed as concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. The indoles decreased both basal and iron-related lipid peroxidation in a concentration-dependent manner. Melatonin reduced basal MDA + 4-HDA levels when used at the concentrations of 0.25 mM or higher, and prevented iron-induced lipid peroxidation at concentrations of 1.0, 2.0, 2.5, or 5.0 mM. The lowest effective concentrations of NAS required to lower basal and iron-related lipid peroxidation were 0.05 mM and 0.25 mM, respectively. IPA, only when used in the highest concentrations of 2.5 mM or 5 mM inhibited basal lipid peroxidation levels and it was ineffective on the levels of MDA + 4-HDA due to iron damage. 5HIAA reduced basal lipid peroxidation when used at concentrations of 0.25 mM or higher, and it prevented iron-induced lipid peroxidation only at the highest applied concentration (5 mM). In conclusion, melatonin and related indoles at pharmacological concentrations protect against both the autoxidation of lipids as well as induced peroxidation of lipids in testes. In doing so, these agents would be expected to reduce testicular cancer that is initiated by products of lipid peroxidation.  相似文献   

2.
Excessive free iron and the associated oxidative damage are commonly related to carcinogenesis. Among the antioxidants known to protect against iron-induced oxidative abuse and carcinogenesis, melatonin and other indole compounds recently have received considerable attention. Indole-3-propionic acid (IPA), a deamination product of tryptophan, with a structure similar to that of melatonin, is present in biological fluids and is an effective free radical scavenger. The aim of the study was to examine the effect of IPA on experimentally induced oxidative changes in rat hepatic microsomal membranes. Microsomes were preincubated in presence of IPA (10, 3, 2, 1, 0.3, 0.1, 0.01 or 0.001 mM) and, then, incubated with FeCl(3) (0.2 mM), ADP (1.7 mM) and NADPH (0.2 mM) to induce oxidative damage. Alterations in membrane fluidity (the inverse of membrane rigidity) were estimated by fluorescence spectroscopy and lipid peroxidation by measuring concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA). IPA, when used in concentrations of 10, 3 or 2 mM, increased membrane fluidity, although at these concentrations it did not influence lipid peroxidation significantly. The decrease in membrane fluidity due to Fe(3+) was completely prevented by preincubation in the presence of IPA at concentrations of 10, 3, 2 or 1 mM. The enhanced lipid peroxidation due to Fe(3+) was prevented by IPA only at the highest concentration (10 mM). It is concluded that Fe(3+)-induced rigidity and, to a lesser extent, lipid peroxidation in microsomal membranes may be reduced by IPA. However, IPA in high concentrations increase membrane fluidity. Besides melatonin, IPA may be used as a pharmacological agent to protect against iron-induced oxidative damage to membranes and, potentially, against carcinogenesis.  相似文献   

3.
Potassium bromate (KBrO3) is a prooxidant and carcinogen, inducing thyroid tumors. Melatonin and indole-3-propionic acid (IPA) are effective antioxidants. Some antioxidative effects of propylthiouracil (PTU)--a thyrostatic drug--have been found. The aim of the study was to compare protective effects of melatonin, IPA, and PTU against lipid peroxidation in the thyroids, collected from rats treated with KBrO3, and in homogenates of porcine thyroids, incubated in the presence of KBrO3. Wistar rats were administered KBrO3 (110 mg/kg b.w., i.p., on the 10th day of the experiment) and/or melatonin, or IPA (0.0645 mmol/kg b.w., i.p., twice daily, for 10 days), or PTU (0.025% solution in drinking water, for 10 days). Homogenates of porcine thyroids were incubated for 30 min in the presence of KBrO3 (5 mM) plus one of the antioxidants: melatonin (0.01, 0.1, 0.5, 1.0, 5.0, 7.5 mM), or IPA (0.01, 0.1, 0.5, 1.0, 5.0, 7.5, 10.0 mM), or PTU (0.01, 0.1, 0.5, 1.0, 5.0, 7.5, 10.0 mM). The level of lipid peroxidation products (MDA + 4-HDA) was measured spectrophotometrically in thyroid homogenates. In vivo pretreatment with either melatonin or with IPA or with PTU decreased lipid peroxidation caused by KBrO3--injections in rat thyroid gland. Under in vitro conditions, PTU (5.0, 7.5, and 10.0 mM), but neither melatonin nor IPA, reduced KBrO3-related lipid peroxidation in the homogenates of porcine thyroids. In conclusion, melatonin and IPA may be of great value as protective agents under conditions of exposure to KBrO3.  相似文献   

4.
Lipid peroxidation is a degenerative chain reaction in biological membranes that may be initiated by exposure to free radicals. This process is associated with changes in the membrane fluidity and loss of several cell membrane-dependent functions. 5-methoxytryptophol (ML) is an indole isolated from the mammalian pineal gland. The purpose of this study was to investigate the effects of ML (0. 01mM-10mM) on membrane fluidity modulated by lipid peroxidation. Hepatic microsomes obtained from rats were incubated with or without ML (0.01-10 mM). Then lipid peroxidation was induced by FeCl(3), ADP, and NADPH. Membrane fluidity was determined using fluorescence spectroscopy. Malonaldehyde (MDA) +4-hydroxyalkenals (4-HDA) concentrations were estimated as an indicator of the degree of lipid peroxidation. With oxidative stress, membrane fluidity decreased and MDA+4-HDA levels increased. ML (0.01-3 mM) reduced membrane rigidity and the rise in MDA+4-HDA formation in a concentration-dependent manner. 10 mM ML protected against lipid peroxidation but failed to prevent the membrane rigidity. In the absence of oxidative reagents, ML (0.3-10 mM) decreased membrane fluidity whereas MDA+4-HDA levels remained unchanged. This indicates that ML may interact with membrane lipids. The results presented here suggest that ML may be another pineal indoleamine (in addition to melatonin) that resists membrane rigidity due to lipid peroxidation.  相似文献   

5.
Prolonged exposure to excessive aluminium (Al) concentrations is involved in the ethiopathology of certain dementias and neurological disorders. Melatonin is a well-known antioxidant that efficiently reduces lipid peroxidation due to oxidative stress. Herein, we investigated in synaptosomal membranes the effect of melatonin in preventing Al promotion of lipid and protein oxidation when the metal was combined with FeCl3 and ascorbic acid. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations in the membrane suspension and protein carbonyls were measured in the synaptosomes as an index of oxidative damage. Under our experimental conditions, the addition of Al (0.0001–1 mmol/L) enhanced MDA+4-HDA formation in the synaptosomes. In addition, Al (1 mmol/L) raised protein carbonyl contents. Melatonin reduced, in a concentration-dependent manner, lipid and protein oxidation due to Al, FeCl3 and ascorbic acid in the synaptosomal membranes. These results show that melatonin confers protection against Al-induced oxidative damage in synaptosomes and suggest that this indoleamine may be considered as a neuroprotective agent in Al toxicity because of its antioxidant activity.  相似文献   

6.
The indoleamine melatonin and the synthetic antiestrogenic drug tamoxifen seem to have similar mechanisms in inhibiting the growth of estrogen receptor positive breast cancer cells. In this study, we compared the ability of these molecules, alone and in combination, in stabilizing microsomal membranes against free radical attack. Hepatic microsomes were obtained from male rats and incubated with or without tamoxifen (50–200 μm), melatonin (1 mm) or both; lipid peroxidation was induced by addition of FeCl3, NADPH and ADP. After oxidative damage, membrane fluidity, measured by fluorescence polarization techniques, decreased whereas malonaldehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations increased. Incubation of the microsomes with tamoxifen prior to exposure to free radical generating processes inhibited, in a dose-dependent manner, the increase in membrane rigidity and the rise in MDA+4-HDA levels. When melatonin was added, the efficacy of tamoxifen in preventing membrane rigidity was enhanced. Thus, the IC50s for preventing membrane rigidity and for inhibiting lipid peroxidation obtained for tamoxifen in the presence of melatonin were lower than those obtained with tamoxifen alone. Moreover, tamoxifen (50–200 μm) in the presence of melatonin reduced basal membrane fluidity and MDA+4-HDA levels in microsomes. These synergistic effects of tamoxifen and melatonin in stabilizing biological membranes may be important in protecting membranes from free radical damage. Received: 7 July 1997/Revised: 12 November 1997  相似文献   

7.
Potassium bromate (KBrO(3)) is classified as a carcinogenic agent. KBrO(3) induces tumors and pro-oxidative effects in kidneys. Melatonin is a well known antioxidant and free radical scavenger. Indole-3-propionic acid (IPA), an indole substance, also reveals antioxidative properties. Recently, some antioxidative effects of propylthiouracil (PTU)-an antithyroid drug-have been found. The aim of the study was to compare protective effects of melatonin, IPA, and PTU against lipid peroxidation in the kidneys and blood serum and, additionally, in the livers and the lungs, collected from rats, pretreated with KBrO(3). Male Wistar rats were administered KBrO(3) (110 mg/kg b.w., i.p., on the 10th day of the experiment) and/or melatonin, or IPA (0.0645 mmol/kg b.w., i.p., twice daily, for 10 days), or PTU (0.025% solution in drinking water, for 10 days). The level of lipid peroxidation products-malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA)-was measured spectrophotometrically in thyroid homogenates. KBrO(3), when injected to rats, significantly increased lipid peroxidation in the kidney homogenates and blood serum, but not in the liver and the lung homogenates. Co-treatment with either melatonin or with IPA, but not with PTU, decreased KBrO(3)-induced oxidative damage to lipids in the rat kidneys and serum. In conclusion, melatonin and IPA, which prevent KBrO(3)-induced lipid peroxidation in rat kidneys, may be of great value as protective agents under conditions of exposure to KBrO(3).  相似文献   

8.
The serum concentrations of aluminum, a metal potentially involved in the pathogenesis of Alzheimer's disease, increase with age. Also, intense and prolonged exposure to aluminum may result in dementia. Melatonin and pinoline are two well known antioxidants that efficiently reduce lipid peroxidation due to oxidative stress. Herein, we investigated the effects of melatonin and pinoline in preventing aluminum promotion of lipid peroxidation when the metal was combined with FeCl3 and ascorbic acid in rat synaptosomal membranes. Lipid peroxidation was estimated by quantifying malondialdehyde (MDA) and 4-hydroxyalkenal (4-HDA) concentrations in the membrane suspension. Under the experimental conditions used herein, the addition of aluminum (0.0001 to 1 mmol/L) enhanced MDA + 4-HDA formation in the synaptosomes. Melatonin and pinoline reduced, in a concentration-dependent manner, lipid peroxidation due to aluminum, FeCl3 and ascorbic acid in the synaptosomal membranes. These results suggest that the indoleamine melatonin and the beta-carboline pinoline may potentially act as neuroprotectant agents in the therapy of those diseases with elevated aluminum concentrations in the tissues.  相似文献   

9.
Maharaj DS  Limson JL  Daya S 《Life sciences》2003,72(12):1367-1375
Disorders of iron accumulation are known to produce hepatotoxicity. Agents, which can reduce Fe(3+) to a more usable form Fe(2+) could potentially limit such damage. Since it has been previously demonstrated that the pineal secretory product, melatonin, is able to bind iron, we decided to investigate the potential protective properties of the principal melatonin metabolite and degradant, 6-hydroxymelatonin (6-OHM). Using adsorptive cathode stripping voltammetry (AdCSV) we showed that Fe(3+) in the presence of 6-OHM is converted to Fe(2+). We further demonstrated that 6-OHM reduces the Fe(2+)-induced rise in lipid peroxidation in rat liver homogenates. The results imply that 6-OHM facilitates the conversion of Fe(3+) to Fe(2+) which is a more biologically usable form of iron. While such a conversion could also potentially make more Fe(2+) available for driving the Fenton reaction and the consequent generation of the dangerous hydroxyl radical, 6-OHM is able to quench these radicals, thereby providing tissue protection.  相似文献   

10.
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 &#109 +N O 3 &#109 were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration.  相似文献   

11.
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 - +N O 3 - were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration.  相似文献   

12.
Numerous data indicate that hyperhomocysteinemia is a risk factor for cardio- and cerebrovascular diseases. At least in part, homocysteine (HCY) impairs cerebrovascular function because it generates large numbers of free radicals. Since melatonin is a well-known antioxidant, which reduces oxidative stress and decreases HCY concentrations in plasma, the aim of this study was to investigate the effect of melatonin in preventing HCY-induced protein and lipid oxidation in rat brain homogenates. Brain homogenates were obtained from Sprague-Dawley rats and were incubated with or without HCY (0.01-5 mM) or melatonin (0.01-3 mM). Carbonyl content of proteins, and malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations in the brain homogenates were used as an index of protein and lipid oxidation, respectively. Under the experimental conditions used, the addition of HCY (0.01-5 mM) to the homogenates enhanced carbonyl protein and MDA+4-HDA formation. Melatonin reduced, in a concentration-dependent manner, protein and lipid oxidation due to HCY in the brain homogenates. These data suggest that preserving proteins from oxidative insults is an additional mechanism by which melatonin may act as an agent in potentially decreasing cardiovascular and cerebrovascular diseases related to hyperhomocysteinemia.  相似文献   

13.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

14.
Enhanced oxalate binding (150-180% of control) was observed in kidney, liver, brain and heart, after subjecting them to lipid peroxidation in presence of iron. Kidney mitochondrial oxalate binding was stimulated by different promoters, and the order of stimulation was Fe2+ greater than t-BH greater than ascorbic acid greater than Fe3+ greater than H2O2. Oxalate binding was maximum when iron concentration was between 1-2 mM. The iron-induced oxalate binding was inhibited by reduced glutathione, beta-mercaptoethanol, alpha-tocopherol and hydroxyl ion scavengers, histidine and mannitol. Catalase inhibited both Fe(2+)-H2O2 induced oxalate binding and lipid peroxidation reactions, suggesting that the induced oxalate binding in mitochondria was mediated through the hydroxyl radical reaction mechanism.  相似文献   

15.
Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro‐oxidative bile acid. Melatonin, a well‐known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl3 and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4‐hydroxyalkenals (MDA + 4‐HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4‐HDA levels induced by TLC was inhibited by melatonin in a concentration‐dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. J. Cell. Biochem. 110: 1219–1225, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

16.
渗透胁迫下稻苗中铁催化的膜脂过氧化作用   总被引:12,自引:0,他引:12  
在-0.7MPa渗透胁迫下,水稻幼苗体内和H2O2大量产生,Fe2+积累,膜脂过氧化作用加剧。水稻幼苗体内Fe2+含量与膜脂过氧化产物MDA含量呈极显著的正相关。外源Fe2+、Fe3+、H2O2、Fe2++H2O2、DDTC均能刺激膜脂过氧化作用,而铁离子的螯合剂DTPA则有缓解作用。OH的清除剂苯甲酸钠和甘露醇能明显地抑制渗透胁迫下Fe2+催化的膜脂过氧化作用。这都表明渗透胁迫下水稻幼苗体内铁诱导的膜脂过氧化作用主要是由于其催化Fenton型Haber-Weiss反应形成OH所致。  相似文献   

17.
Ferrous ion (Fe(2+)) is long thought to be the most likely active species, producing oxidants through interaction of Fe(2+) with oxygen (O(2)). Because current iron overload therapy uses only Fe(3+) chelators, such as desferrioxamine (DFO), we have tested a hypothesis that addition of a Fe(2+) chelator, 2,2'-dipyridyl (DP), may be more efficient and effective in preventing iron-induced oxidative damage in human liver HepG2 cells than DFO alone. Using ferrozine as an assay for iron measurement, levels of cellular iron in HepG2 cells treated with iron compounds correlated well with the extent of lipid peroxidation (r = 0.99 after log transformation). DP or DFO alone decreased levels of iron and lipid peroxidation in cells treated with iron. DFO + DP together had the most significant effect in preventing cells from lipid peroxidation but not as effective in decreasing overall iron levels in the cells. Using ESR spin trapping technique, we further tested factors that can affect oxidant-producing activity of Fe(2+) with dissolved O(2) in a cell-free system. Oxidant formation enhanced with increasing Fe(2+) concentrations and reached a maximum at 5 mM of Fe(2+). When the concentration of Fe(2+) was increased to 50 mM, the oxidant-producing activity of Fe(2+) sharply decreased to zero. The initial ratio of Fe(3+):Fe(2+) did not affect the oxidant producing activity of Fe(2+). However, an acidic pH (< 3.5) significantly slowed down the rate of the reaction. Our results suggest that reaction of Fe(2+) with O(2) is an important one for oxidant formation in biological system, and therefore, drugs capable of inhibiting redox activity of Fe(2+) should be considered in combination with a Fe(3+) chelator for iron overload chelation therapy.  相似文献   

18.
Site-specific induction of lipid peroxidation by iron in charged micelles   总被引:1,自引:0,他引:1  
Generation of hydroxyl radicals by the Fenton reaction resulted in lipid peroxidation of linoleic acid (LA) (H2O2-Fe2+-induced lipid peroxidation) in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles, but not in negatively charged sodium dodecyl sulfate (SDS) micelles. However, more OH radicals formed via the Fenton reaction were trapped by N-t-butyl-alpha-phenylnitrone (PBN) in SDS micelles than in TTAB micelles. When detergent-dispersed LA was contaminated with linoleic acid hydroperoxide (LOOH), lipid peroxidation was catalyzed by Fe2+ via reductive cleavage of LOOH (LOOH-Fe2+-induced lipid peroxidation), and Fe2+ was oxidized simultaneously in SDS micelles, even when H2O2 was not present. In contrast, LOOH-Fe2+-induced lipid peroxidation and simultaneous oxidation of Fe2+ were not observed in TTAB micelles. An ESR spectrum presumed to be due to an alkoxy radical trapped by PBN was also detected in SDS micelles, but not in TTAB micelles in the LOOH-Fe2+-induced lipid peroxidation system. The results are discussed in the light of the localization of iron, the unsaturated bonding moiety of LA, the OOH-group of LOOH, and the trapping site of PBN in different charged micelles.  相似文献   

19.
The antioxidative action of melatonin on iron-induced neurodegeneration in the nigrostriatal dopaminergic system was evaluated in vivo. Intranigral infusion of iron chronically degenerated the dopaminergic transmission of the nigrostriatal system. An increase in lipid peroxidation in the infused substantia nigra and reductions in dopamine levels and dopaminergic terminals in the ipsilateral striatum were observed 7 d after iron infusion. Whereas local infusion of melatonin (60 microg/microl, 1 microl) alone did not alter dopaminergic transmission, coinfusion of melatonin with iron suppressed iron-induced oxidative damages. Systemic infusion of melatonin via osmotic pumps had no effect on iron-induced neurodegeneration. However, repetitive intraperitoneal injections of melatonin (10 mg/kg) prevented iron-induced oxidative injuries. The ratio of glutathione (GSH)/oxidized glutathione (GSSG) was moderately increased in the lesioned substantia nigra of the melatonin-treated rats compared to that of the lesioned group in control rats. The antioxidative effect of melatonin was verified in cortical homogenates. Melatonin dose-dependently suppressed autoxidation and iron-induced lipid peroxidation. Melatonin was as effective as GSH and was less effective than Trolox (a water-soluble analogue of vitamin E) in inhibiting iron-elevated lipid peroxidation of brain homogenates. Our data suggest that melatonin is capable of at least partially preventing the iron-induced neurodegeneration in the nigrostriatal dopaminergic system.  相似文献   

20.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号