首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF) and endonuclease G (endoG). Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID). We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.  相似文献   

2.
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that triggers caspase-independent apoptosis. We describe here the cloning and characterization of a novel AIF-homologous molecule designated AMID (AIF-homologous mitochondrion-associated inducer of death). AMID lacks a mitochondrial localization sequence but shares significant homology with AIF and NADH oxidoreductases from bacteria to mammalian species. Immunofluorescent staining and biochemical experiments indicated that AMID was co-localized with mitochondria. Overexpression of AMID induced cell death with characteristic apoptotic morphology. Furthermore, AMID-induced apoptosis was independent of caspase activation and p53 and was not inhibited by Bcl-2. These findings suggest that AMID induces a novel caspase-independent apoptotic pathway.  相似文献   

3.
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.  相似文献   

4.
Park YC  Jeong JH  Park KJ  Choi HJ  Park YM  Jeong BK  Higuchi Y  Yoo YH 《Life sciences》2005,77(16):2059-2070
Sulindac is one of the most widely studied nonsteroidal anti-inflammatory drugs in the prevention of colon cancer. Thus, from the viewpoint of colon cancer chemotherapy it is important to reveal the mechanism of sulindac-induced cell death. This study was undertaken to dissect the molecular mechanism underlying sulindac-induced apoptosis in human colon cancer cell line HT-29 (mutant p53), focusing on nuclear translocation of AIF, DFF and endonuclease G. On induction of apoptosis by sulindac, it was associated with decreased mitochondrial membrane potential, nuclear expression of active caspase-3, cleavage of poly(ADP-ribose) polymerase, translocation of mitochondrial proteins to the nucleus, and morphological evidence of nuclear condensation. However, sulindac led to only disintegration of nuclear DNA into high molecular weight DNA fragments of about 100-300 kbp as determined by a pulse-field gel electrophoresis, suggesting a predominantly AIF-mediated cell death process. In summary, our findings indicate that sulindac induces large-scale DNA fragmentation without oligonucleosomal DNA fragmentation. This result suggests that nuclear translocation of DFF and endonuclease G are not sufficient for the induction of oligonucleosomal DNA fragmentation in HT-29 cells.  相似文献   

5.
Flavonoids have antioxidant and antitumor promoting effects. Rhus verniciflua Stokes (RVS) is a flavonoid-rich herbal medicine that has long been used in Korea as both a food additive and antitumor agent. It was previous reported that a purified flavonoid fraction prepared from RVS, herein named RCMF (the RVS chloroform-methanol fraction), inhibited the proliferation and induced apoptosis in human osteosarcoma (HOS) cells. This study examined the mechanisms involved in the RCMF-mediated apoptosis in HOS cells. RCMF was shown to be capable of inducing apoptosis in HOS cells by inducing p53 in the cells resulting in the decrease in Bcl-2 level, activation of Bax, and cytoplasmic release of cytochrome c, which led to the translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) into the nucleus. However, the RCMF-induced apoptosis was suppressed by transfecting the cells with antisense p53 oligonucleotides but not by treating them with a MAPK or caspase inhibitor. This suppression occurred through the regulation of Bcl-2 members as well as by preventing the nuclear translocation of the mitochondrial apoptogenic factors. Overall, it appears that p53-mediated mitochondrial stress and the nuclear translocation of AIF and EndoG are mainly required for the apoptosis induced by RCMF.  相似文献   

6.
AMID (apoptosis-inducing factor (AIF)-like mitochondrion-associated inducer of death) is a poorly studied member of the AIF family; despite the given name AMID, predicting its association with mitochondria, its real cellular localization, as well as its role and changes during apoptosis are currently unclear. By means of MALDI-TOF mass spectrometry, we have identified as AMID (accession number AAH38129, sequence coverage 31%) the protein isolated by Pisum sativum lectin-affinity chromatography from the plasma membrane fraction of apoptotic murine leukemia L1210 cells, lacking in the intact cells. The obtained results suggest its possible glycosylation that was further suggested by finding N-glycosylation sequon in the signal peptide of AMID protein (in silica), and by predicting transmembrane localization of its N-terminal part. Using monoclonal antibodies to AMID, we demonstrated an increased expression of AMID in human leukemia Jurkat T-cells after apoptosis induction. Immunocytochemical study suggested its association to the plasma membrane.  相似文献   

7.
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2?/?Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2?/?Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis.  相似文献   

8.
The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.  相似文献   

9.
Apoptosis-inducing factor (AIF) is implicated in caspase-independent apoptotic-like death. AIF released from mitochondria translocates to the nucleus, where it mediates some apoptotic events such as chromatin condensation and DNA degradation. Here, the role of AIF in the neuronal death was studied under physiological conditions. When we analyzed the cellular localization of AIF during cerebellar development, we found a significant increase in the number of neurons with nuclear AIF localization in an age-dependent manner. On the other hand, cerebellar granule neurons (CGN) chronically cultured in low concentration of potassium (5 mM; K5) die with apoptotic-like characteristics after five days. In the present study we found that K5 induces a caspase-dependent apoptotic-like death of CGN as well as a late nuclear translocation of AIF. When CGN death induced by K5 was carried out in the presence of a general inhibitor of caspases, there was a slight decrement of cell death, but neurons eventually died by showing apoptotic-like features such as phosphatidylserine translocation and nuclear condensation. Besides, there was a significant increment of nuclear AIF translocation. These findings support the idea that AIF could be involved in apoptotic-like death of CGN and that it could be an alternative mechanism of neuronal death during cerebellar development.  相似文献   

10.
Apoptosis is a natural form of cell death involved in many physiological changes in the cell. Defects in the process of apoptosis can lead to serious diseases. During some apoptotic pathways, proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are released from the mitochondria and they translocate into the cell nuclei, where they probably participate in chromatin degradation together with other nuclear proteins. Exact mechanism of EndoG activity in cell nucleus is still unknown. Some interacting partners like flap endonuclease 1, DNase I, and exonuclease III were already suggested, but also other interacting partners were proposed. We conducted a living-cell confocal fluorescence microscopy followed by an image analysis of fluorescence resonance energy transfer to analyze the possibility of protein interactions of EndoG with histone H2B and human DNA topoisomerase II alpha (TOPO2a). Our results show that EndoG interacts with both these proteins during apoptotic cell death. Therefore, we can conclude that EndoG and TOPO2a may actively participate in apoptotic chromatin degradation. The possible existence of a degradation complex consisting of EndoG and TOPO2a and possibly other proteins like AIF and cyclophilin A have yet to be investigated.  相似文献   

11.
Although a link between toxic smoke and oxidant lung vascular injury has been indicated, the cellular mechanisms of smoke-induced injury to lung endothelial cells are unknown. We investigated oxidative stress and apoptosis induced by wood smoke extract (SE) in human pulmonary artery endothelial cells (HPAECs) and delineated their relationship. We found that SE increased intracellular reactive oxygen species (ROS), depleted intracellular glutathione, and upregulated Cu/Zn superoxide dismutase and heme oxygenase-1 (2 antioxidant enzymes), but it failed to alter the expression of catalase and glutathione peroxidase. In addition, SE promoted apoptosis as indicated by the external exposure of membrane phosphatidylserine, the loss of mitochondrial membrane potential, an increase in the level of Bax (a proapoptotic protein), and enhanced DNA fragmentation. This apoptosis was associated with mitochondrial-to-nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) (2 apoptogenic proteins) but was independent of caspase cascade activation. Whereas N-acetylcysteine (an antioxidant) effectively reversed the SE-induced increase in ROS and depletion of glutathione, it also suppressed SE-induced nuclear translocation of either AIF or EndoG and prevented the enhanced DNA fragmentation that would have resulted from this. We conclude that 1) although SE upregulates Cu/Zn superoxide dismutase and heme oxygenase-1, it nevertheless increases intracellular oxidative stress in HPAECs, and 2) SE promotes oxidative stress-mediated caspase-independent HPAEC apoptosis that involves mitochondrial-to-nuclear translocation of AIF and EndoG. Thus modulations of the expression of antioxidant enzymes and the caspase-independent apoptotic pathway are possible target choices for potential therapeutic regimes to treat smoke-induced lung injury.  相似文献   

12.
The arsenite-stimulated human ATPase (hASNA-I) protein is a distinct human ATPase whose cDNA was cloned by sequence homology to the Escherichia coli ATPase arsA. Its subcellular localization in human malignant melanoma T289 cells was examined to gain insight into the role of hASNA-I in the physiology of human cells. Immunocytochemical staining using the specific anti-hASNA-I monoclonal antibody 5G8 showed a cytoplasmic, perinuclear, and nucleolar distribution. Subcellular fractionation indicated that the cytoplasmic hASNA-I was soluble and that the perinuclear distribution was due to association with the nuclear membrane rather than with the endoplasmic reticulum. Its presence in the nucleolus was confirmed by showing colocalization with an antibody of known nucleolar specificity. Further immunocytochemical analysis showed that the hASNA-I at the nuclear membrane was associated with invaginations into the nucleus in interphase cells. These results indicate that hASNA-I is a paralogue of the bacterial ArsA protein and suggest that it plays a role in the nucleocytoplasmic transport of a nucleolar component. J. Cell. Biochem. 71:1–10, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
凋亡诱导因子与细胞凋亡   总被引:5,自引:1,他引:5  
凋亡诱导因子 (apoptosisinducefactor,AIF)是定位于线粒体膜间隙中的一种氧化还原酶 ,含有线粒体定位信号和核定位信号序列 ,具有很强的促凋亡活性 ,在类胚体成腔和胚胎早期分化过程中具有重要作用。在死亡信号或细胞胁迫的刺激下 ,线粒体通透性转变孔开放 ,释放AIF及细胞色素c至细胞质溶质中 ,具有核定位信号序列的AIF便进入细胞核内 ,引起染色质的初步凝集和DNA大规模断片化 (约 5 0kb) ,进而引发不依赖于胱冬肽酶的细胞凋亡途径 ;线粒体膜间隙释放出来的细胞色素c则可引起染色质的进一步凝集和DNA的寡核小体断片化 ,从而引发依赖于胱冬肽酶的细胞凋亡途径 ;与此同时 ,从线粒体膜间隙释放出来的AIF又可反馈放大线粒体通透性转变孔的渗透性 ,引起AIF与细胞色素c的进一步释放从而加快细胞死亡的进程。此外 ,细胞胁迫还可激活由多聚 (ADP 核糖 )聚合酶 1(PARP 1)所引发的细胞凋亡途径 ,通过AIF和细胞色素c引发细胞凋亡。最新研究结果表明 ,AIF同源线粒体关联死亡诱导者 (AIF homologousmitochondria associatedinducerofdeath ,AMID)与p5 3应答基因的编码产物 (p5 3 responsivegene 3,PRG3)均为AIF的同源蛋白质 ,可直接诱导人类细胞的凋亡。线虫的凋亡诱导因子WAH 1所诱导的细胞凋亡途径依赖于胱冬肽酶  相似文献   

15.
Lee KH  Moon KJ  Kim HS  Yoo BC  Park S  Lee H  Kwon S  Lee ES  Yoon S 《FEBS letters》2008,582(15):2319-2324
We investigated the cellular localization of ectopically-expressed CIS, SOCS1, SOCS2 and SOCS3 proteins. We found that SOCS proteins localize to the nucleus where they reduce Stat3 proteins and that the presence of proteasome inhibitors increased SOCS nuclear localization. Our results indicate that increased nuclear localization resulted from increased levels of SOCS proteins in the cytoplasm. Finally, we demonstrate that the same effect occurs with endogenously-expressed SOCS proteins. These observations suggest that increased cytoplasmic levels of proteins in the SOCS family are regulated through nuclear translocation.  相似文献   

16.
Evidence has been accumulated indicating that GnRH-like peptides are present in a variety of extrabrain areas of mammalian and nonmammalian vertebrates. A pioneer study carried out in the frog, Rana esculenta, demonstrated that testicular GnRH induced spermatogonial proliferation. Recently, we have shown that in proliferating spermatogonia (SPG) of frogs, a change of localization of the oncoprotein Fos, from the cytoplasm to the nucleus, occurs. This leads to the hypothesis that one or more testicular GnRH peptides may regulate SPG proliferation through Fos family proteins. Therefore, in vivo experiments in intact R. esculenta and in vitro incubations of testis fragments have been carried out using GnRH agonist (GnRHa; buserelin) and GnRH antagonist (D-pGlu(1),D-Phe(2),D-Trp(3,6)-GnRH). Cytoplasmic and nuclear Fos-like protein localization has been found by Western blot analysis in testicular extracts. Immunocytochemistry confirmed that cytoplasmic immunostaining was restricted to SPG; change of localization into the nuclear compartment was observed after GnRHa treatment. Northern blot analysis showed that treatments of testis fragments with GnRHa did not modify testicular c-fos mRNA expression. On the contrary, a Fos-like protein of 52 kDa, while not affected in vivo, disappeared from testicular cytosolic extracts after in vitro treatment with GnRHa. Contemporaneously, a 55-kDa Fos-related signal appeared in nuclear extracts. The GnRH antagonist counteracted the effects of GnRHa. Furthermore, in vivo treatments showed that GnRHa acted negatively on a 43-kDa nuclear Fos-related signal and that gonadotropins caused the decrease of 52-kDa cytoplasmic signal. In conclusion, we show, to our knowledge for the first time, that Fos is regulated by GnRHa directly (not through the pituitary) at the testicular level. The main effect appears to be related to Fos translocation from cytoplasmic to nuclear compartments of SPG.  相似文献   

17.

Background

Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization.

Methods

We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts.

Results

Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype.

Conclusions

IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.  相似文献   

18.
In this study, it was shown that the mammalian sterile 20-like serine/threonine protein kinase 3 (Mst3) plays an essential role in the staurosporine-induced apoptosis of HeLa cells. The staurosporine-induced apoptosis was reduced by around 65% by the selective knockdown of Mst3 in stable clones, HeLa(siMst3). Although caspases were shown to be involved in the Mst3-mediated apoptosis, only 15–20% of staurosporine-induced apoptosis was suppressed by the caspase inhibitor, z-DEVD-fmk. Accordingly, Mst3 was proposed to trigger a caspase-independent apoptotic pathway in response to staurosporine. Interestingly, staurosporine greatly induced the mitochondrial membrane potential transition in HeLa cells, but had no effect in Hela(siMst3). The role of Mst3 in controlling the mitochondrial integrity was therefore proposed, presumably through the regulation of Bax. Furthermore, it was shown that staurosporine promoted the nuclear translocation of apoptosis-inducing factor and endonuclease G in HeLa cells. The nuclease activity associated with endonuclease G was also enhanced in response to staurosporine. However, both staurosporine-induced nuclear translocation of apoptosis-inducing factor and endonuclease G and the nuclease activity associated with endonuclease G were markedly reduced in Hela(siMst3). These results suggest that Mst3 may respond to staurosporine to trigger the caspase-independent apoptotic pathway by regulating the nuclear translocation of apoptosis-inducing factor and endonuclease G, and the nuclease activity associated with endonuclease G.  相似文献   

19.

Background

We previously identified curcumin as a potent inducer of fibroblast apoptosis, which could be used to treat hypertrophic scar formation. Here we investigated the underlying mechanism of this process.

Principal Findings

Curcumin-induced apoptosis could not be blocked by caspase-inhibitors and we could not detect any caspase-3/7 activity. Curcumin predominantly induced mitochondria-mediated ROS formation and stimulated the expression of the redox-sensitive pro-apoptotic factor p53. Inhibition of the pro-apoptotic signaling enzyme glycogen synthase kinase-3β (GSK-3β) blocked curcumin-induced apoptosis. Apoptosis was associated with high molecular weight DNA damage, a possible indicator of apoptosis-inducing factor (AIF) activity. Indeed, curcumin caused nuclear translocation of AIF, which could be blocked by the antioxidant N-acetyl cysteine. We next investigated how AIF is effluxed from mitochondria in more detail. The permeability transition pore complex (PTPC), of which the voltage-dependent anion channel (VDAC) is a component, could be involved since the VDAC-inhibitor DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid) efficiently blocked AIF translocation. However, PTPC is not involved in AIF release since cyclosporine A, a specific inhibitor of the complex did not block apoptosis. Alternatively, the pro-apoptotic protein Bax could have formed mitochondrial channels and interacted with VDAC. Curcumin caused mitochondrial translocation of Bax, which was blocked by DIDS, suggesting a Bax-VDAC interaction. Interestingly, ceramide channels can also release apoptogenic factors from mitochondria and we found that addition of ceramide induced caspase-independent apoptosis. Surprisingly, this process could also be blocked by DIDS, suggesting the concerted action of Bax, VDAC and ceramide in the efflux of AIF from the mitochondrion.

Conclusions

Curcumin-induced fibroblast apoptosis is totally caspase-independent and relies on the mitochondrial formation of ROS and the subsequent nuclear translocation of AIF, which is released from a mitochondrial pore that involves VDAC, Bax and possibly ceramides. The composition of the AIF-releasing channel seems to be much more complex than previously thought.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号