首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of fluorescence emission maxima ofl-tryptophan and single-tryptophan-containing proteins (ribonuclease T1, melittin, and parvalbumin) on excitation wavelength has been studied in reversed micelle systems of sodium bis(2-ethyl-1-oxyl) sulfosuccinate (AOT). No effect of fluorescence maximum shift for different excitation wavelengths is observed for ribonuclease T1, in which a single tryptophan residue is located in the nonrelaxating, nonpolar protein interior.l-Tryptophan and the rest of the studied proteins, which contain single tryptophan residues exposed to the solvent, exhibit the dipolar relaxational processes of partly immobilized water molecules in micelles. This effect depends on the molar H2O/AOT ratio. Circular dichroism measurements prove that there have been no structural changes of the studied proteins in micellar systems. The results provide information about dynamic relaxational processes in proteins.  相似文献   

2.
Flow cytometric energy transfer (FCET) measurements between labeled specific sites of cell surface elements (Sz?llosi et al., Cytometry, 5:210-216, 1984) have been extended in a simplified form using a flow cytometer equipped with single excitation beam. This versatile and easily applicable method has several advantages over any nonflow cytometric (i.e., spectrofluorimetric) energy transfer measurements on cell surfaces: The labeled ligands can be applied in excess, without washing, thereby enabling the investigation of relatively labile receptor-ligand complexes. Contributions of signals from cell debris, from cell aggregates, or from nonviable cells can be avoided by gating the data collection on the light scatter signal. The heterogeneity of the cell population with respect to the proximity of the labeled binding sites can be studied. In the cases of homologous ligands or of ligands binding to the same molecule but at different epitopes, the determination of fluorescence resonance energy transfer efficiency values can be carried out on a cell-by-cell basis, offering data on intramolecular conformational changes. This modified FCET method enabled us to demonstrate the uniform density of glycoproteins, specific for Con A binding, in the plasma membrane of normal and Gross virus leukemic mouse cells of different sizes. The utility of this procedure has also been demonstrated by using the mean fluorescence intensities of the distribution curves in the calculation of the fluorescence energy transfer efficiency.  相似文献   

3.
We have used frequency domain fluorescence techniques to resolve the component emission spectra for several two tryptophan containing proteins (e.g., horse liver alcohol dehydrogenase, sperm whale apomyoglobin, yeast 3-phosphoglycerate kinase, apoazurin from Alcaligenes denitricans). We have first performed multifrequency phase/modulation measurements and have found the fluorescence of each of these proteins to be described by a double exponential. Then, using phase-sensitive detection and the algorithm of Gratton and Jameson [Gratton, E., & Jameson, D. M. (1985) Anal. Chem. 57, 1694-1697], we have determined the emission spectrum associated with each decay time for these proteins. We have compared these phase-resolved spectra with the fractional contributions of the component fluorophores determined by selective solute quenching experiments. Reasonably good agreement is seen in most cases, which argues that the individual Trp residues emit independently. In the case of apoazurin, however, a negative amplitude is seen for the phase-resolved spectrum of the short-lifetime component. This pattern is consistent with the occurrence of energy transfer from the internal Trp residue to the surface Trp of this protein. We also present multifrequency lifetime measurements, phase-resolved spectra, and solute quenching data for a few protein-ligand complexes, to illustrate the utility of this approach for the study of changes in the fluorescence of proteins.  相似文献   

4.
The human alpha 1-proteinase inhibitor (alpha 1-PI) and its reactive site modified form (alpha 1-PI*) have been examined using the fluorescence quenching resolved spectra method. The red-edge excitation measurements were applied for the study of structural differences between these forms. The crystallographic data of alpha 1-PI* structure have shown that its polypeptide chain includes only two tryptophan residues. The fluorescence quenching data have indicated that the conversion of the intact inhibitor molecule into its nicked form is accompanied by changes in the tryptophan environments. The red-edge excitation measurements have proved that the dipolar relaxation process around the Trp-194 residue is much bigger in alpha 1-PI* form than in the nicked one.  相似文献   

5.
Techniques for correction of fluorescence emission and excitationspectra of phytoplankton are described, which can be appliedin any commercially available spectrophotometer. The correctionof the emission spectrum is based on the measurement of a calibratedlight source. The excitation spectra are corrected by meansof a quantum counter solution that measures the spectral intensityof the excitation system and separate correction for wavelength-dependenteffects of the excitation optics. The correction proceduresgive technically corrected spectra, i.e. spectra that are freefrom wavelength dependent bias, but do not give absolute intensityvalues. Spectra that have been properly corrected for instrumentalwavelength dependencies are suitable for intercomparison, bothintra- and interlaboratory. Another application is the derivationof spectral data that will be obtained by other techniques thatmake use of fluorescence measurements, such as flow cytometry,remote sensing and in situ instruments. A necessary conditionis that the spectral response functions of these instrumentsmust be known. 1Present address: AKZO, Arla-CRL, PO Box 9300, NL-6800 SB Arnhem,The Netherlands  相似文献   

6.
7.
A method was developed to determine the intracellular pH (pHi) of individual cells by use of fluorescence measurements. The method is based on the observation that the fluorescence excitation spectrum of fluorescein is pH-dependent. Fluorescence excitation spectra from individual rat bone marrow cells treated with fluorescein diacetate (FDA) were compared with those of fluorescein solutions of known pH values. Cells which were suspended in media of pH between 4.0 and 8.1 with high to normal buffering capacities had pHi values equal to those of the media. Cells suspended in media with low buffering capacities maintained a pH,i of 6.7 +/- 0.2. Preliminary results indicated that the pHi of individual cells may also be determined by using flow cytometry.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) is a technique used for quantifying the distance between two molecules conjugated to different fluorophores. By combining optical microscopy with FRET it is possible to obtain quantitative temporal and spatial information about the binding and interaction of proteins, lipids, enzymes, DNA, and RNA in vivo. In conjunction with the recent development of a variety of mutant green fluorescent proteins (mtGFPs), FRET microscopy provides the potential to measure the interaction of intracellular molecular species in intact living cells where the donor and acceptor fluorophores are actually part of the molecules themselves. However, steady-state FRET microscopy measurements can suffer from several sources of distortion, which need to be corrected. These include direct excitation of the acceptor at the donor excitation wavelengths and the dependence of FRET on the concentration of acceptor. We present a simple method for the analysis of FRET data obtained with standard filter sets in a fluorescence microscope. This method is corrected for cross talk (any detection of donor fluorescence with the acceptor emission filter and any detection of acceptor fluorescence with the donor emission filter), and for the dependence of FRET on the concentrations of the donor and acceptor. Measurements of the interaction of the proteins Bcl-2 and Beclin (a recently identified Bcl-2 interacting protein located on chromosome 17q21), are shown to document the accuracy of this approach for correction of donor and acceptor concentrations, and cross talk between the different filter units.  相似文献   

9.
Steady-state fluorescence anisotropy measurements can be used to detect fluorescence resonance energy transfer (FRET) between identical fluorophores (homo-FRET). However, the contribution of homo-FRET to the steady-state anisotropy must be discerned from those due to the orientational distribution and rotational diffusion, which so far has required photobleaching controls, largely precluding dynamic measurements in live cells. We describe a variation of steady-state anisotropy microscopy in which the contribution of homo-FRET is dynamically isolated from the total anisotropy by exploiting the loss of energy transfer that occurs at red-edge excitation. Excitation of enhanced green fluorescent protein (EGFP) at the red-edge of its absorption band shows the shift in the emission spectrum compared to main-band excitation that is characteristic for photo-selection of static low energy S(0)-S(1) transitions that fail to exhibit FRET. An experimental setup for steady-state fluorescent anisotropy microscopy is described that can be used to acquire anisotropy images in live cells at main-band and red-edge excitation of EGFP. We demonstrate in live cells homo-FRET suppression of protein fusion constructs that consist of two and three EGFP molecules connected by short linkers. This methodology represents a novel approach for the dynamic measurement of homo-FRET in live cells that will be of utility in the biological sciences to detect oligomerization and concentration dependent interactions between identically labeled molecules.  相似文献   

10.
BACKGROUND: The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. METHODS: We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. RESULTS: We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. CONCLUSIONS: We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.  相似文献   

11.
12.
P E H?nninen  J T Soini  E Soini 《Cytometry》1999,36(3):183-188
We studied the use of a dramatically reduced testing zone in combination with two-photon excitation and photon-burst analysis in high-throughput rare-event detection simulation using a modified flow cytometer. Two-photon excitation measurements were performed with a mode-locked titanium:sapphire laser. Fluorescence emission was measured with a photon-counting avalanche photodiode. Measured signal was analysed offline by autocorrelation and burst detection methods. Test samples were composed of full blood and orange fluorescent polystyrene nanospheres mixed in full blood. Results show that two-photon fluorescence excitation and time-correlation analysis provide a good signal-to-noise ratio for rare-event particle detection in a turbid sample environment.  相似文献   

13.
14.
Understanding aqueous protein-protein interactions is crucial for the development of a molecular-thermodynamic model for salt-induced protein precipitation. In addition, protein interactions are important in many disease states, including cataract formation and alpha-amyloid diseases. Fluorescence anisotropy provides a means to measure intermolecular interactions. In this work, monomer-dimer equilibrium of the peptide T4 LYS(11-36) was studied by fluorescence anisotropy over the pH range 4-7 and the NaCl concentration range 0.0-1.0 M, in a 25 mM sodium phosphate buffer. This 26 amino-acid peptide is derived from the beta-sheet region of the T4 lysozyme molecule and has the potential to form amyloid fibrils. The association constant for dimerization increases with rising pH and ionic strength. The potential of mean force for peptide-peptide interactions was calculated from these association constants. Circular-dichroism measurements show that the peptide becomes more structured as the pH rises, possibly contributing to increased association.  相似文献   

15.
Telomere length measurements using digital fluorescence microscopy.   总被引:11,自引:0,他引:11  
BACKGROUND: The ends of chromosomes (telomeres) are important to maintain chromosome stability, and the loss of telomere repeat sequences has been implicated in cellular senescence and genomic instability of cancer cells. The traditional method for measuring the length of telomeres (Southern analysis) requires a large number of cells (>10(5)) and does not provide information on the telomere length of individual chromosomes. Here, we describe a digital image microscopy system for measurements of the fluorescence intensity derived from telomere repeat sequences in metaphase cells following quantitative fluorescence in situ hybridization (Q-FISH). METHODS: Samples are prepared for microscopy using Q-FISH with Cy3 labeled peptide nucleic acid probes specific for (T(2)AG(3))(n) sequences and the DNA dye DAPI. Separate images of Cy3 and DAPI fluorescence are acquired and processed with a dedicated computer program (TFL-TELO). With the program, the integrated fluorescence intensity value for each telomere, which is proportional to the number of hybridized probes, is calculated and presented to the user. RESULTS: Indirect tests of our method were performed using simulated as well as defined tests objects. The precision and consistency of human telomere length measurements was then analyzed in a number of experiments. It was found that by averaging the results of less than 30 cells, a good indication of the telomere length (SD of 10-15%) can be obtained. CONCLUSIONS: We demonstrate that accurate and repeatable fluorescence intensity measurements can be made from Q-FISH images that provide information on the length of telomere repeats at individual chromosomes from limited number of cells.  相似文献   

16.
During continuous irradiation with near-ultraviolet light (l = 36510 nm; 16 mW/mm(2)) for 2-3 min, live mammalian cells increased reversibly the intensity of one or more peaks of their autofluorescence spectrum from an initial ('ground') level to a two- to threefold higher ('active') level. The effect is characterized by the existence of two states of quantum efficiency and a mechanism of transition that expresses a threshold and a refractory period. It appears that mitochondria are the principal sources of the rising autofluorescence intensity; however, not all mitochondria are capable of expressing it. Studying cells from various organisms that belong to various branches of the phylogenetic tree, we found the rapid increase of autofluorescence only in placental mammalian cells. We speculate that the effect may point to the ability of placental mammalian mitochondria to generate pulsating light signals.  相似文献   

17.
Energy transfer between excited triplet states of aromatic amino acid residues was observed at 1.4 degrees K. The distance necessary for energy transfer between monomeric tyrosine and tryptophan residues was determined to be roughly 63 A. Total phosphorescence decay rate constants for several proteins were determined while emission corresponding to tyrosine and tryptophan residues was monitored. The observed decay rate constants are interpreted in terms of intramolecular interactions of the polypeptide residues.  相似文献   

18.
Two-photon fluorescence excitation has been found to be a very powerful method for enhancing the sensitivity and resolution in far-field light microscopy. Two-photon fluorescence excitation also provides a substantially background-free detection on the single-molecule level. It allows direct monitoring of formation of labelled biomolecule complexes in solution. Two-photon excitation is created when, by focusing an intensive light source, the density of photons per unit volume and per unit time becomes high enough for two photons to be absorbed into the same chromophore. In this case, the absorbed energy is the sum of the energies of the two photons. In two-photon excitation, dye molecules are excited only when both photons are absorbed simultaneously. The probability of absorption of two photons is equal to the product of probability distributions of absorption of the single photons. The emission of two photons is thus a quadratic process with respect to illumination intensity. Thus in two-photon excitation, only the fluorescence that is formed in the clearly restricted three-dimensional vicinity of the focal point is excited. We have developed an assay concept that is able to distinguish optically between the signal emitted from a microparticle in the focal point of the laser beam, and the signal emitted from the surrounding free labelled reagent. Moreover, the free labels outside the focal volume do not contribute any significant signal. This means that the assay is separation-free. The method based on two-photon fluorescence excitation makes possible fast single-step and separation-free immunoassays, for example, for whole blood samples. Since the method allows a separation-free assay in very small volumes, the method is very useful for high-throughput screening assays. Consequently we believe that two-photon fluorescence excitation will make a remarkable impact as a research tool and a routine method in many fields of analysis.  相似文献   

19.
20.
The resolution limit of fluorescence correlation spectroscopy for two-component solutions is investigated theoretically and experimentally. The autocorrelation function for two different particles in solution were computed, statistical noise was added, and the resulting curve was fitted with a least squares fit. These simulations show that the ability to distinguish between two different molecular species in solution depends strongly on the number of photons detected from each particle, their difference in size, and the concentration of each component in solution. To distinguish two components, their diffusion times must differ by at least a factor of 1.6 for comparable quantum yields and a high fluorescence signal. Experiments were conducted with Rhodamine 6G and Rhodamine-labeled bovine serum albumin. The experimental results support the simulations. In addition, they show that even with a high fluorescence signal but significantly different quantum yields, the diffusion times must differ by a factor much bigger than 1.6 to distinguish the two components. Depending on the quantum yields and the difference in size, there exists a concentration threshold for the less abundant component below which it is not possible to determine with statistical means alone that two particles are in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号