首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RuBPCO kinetics and the mechanism of CO2 entry in C3 plants   总被引:2,自引:1,他引:1  
Abstract. The CO2 partial pressure in the chloroplasts of intact photosynthetic C3 leaves is thought to be less than the intercellular CO2 partial pressure. The intercellular CO2 partial pressure can be calculated from CO2 and H2O gas exchange measurements, whereas the CO2 partial pressure in the chloroplasts is unknown. The conductance of CO2 from the intercellular space to the chloroplast stroma and the CO2 partial pressure in the chloroplast stroma can be calculated if the properties of photosynthetic gas exchange are compared with the kinetics of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPCO). A discrepancy between gas exchange and RuBPCO kinetics can be attributed to a deviation of CO2 partial pressure in the chloroplast stroma from that calculated in the intercellular space. This paper is concerned with the following: estimation of the kinetic constants of RuBPCO and their comparison with the CO2 compensation concentration; their comparison with differential uptake of 14CO2 and 12CO2; and their comparison with O2 dependence of net CO2 uptake of photosynthetic leaves. Discrepancy between RuBPCO kinetics and gas exchange was found at a temperature of 12.5 °C, a photosynthetic photon flux density (PPFD) of 550 μmol quanta m?2 s?1, and an ambient CO2 partial pressure of 40 Pa. Consistency between RuBPCO kinetics and gas exchange was found if CO2 partial pressure was decreased, temperature incresed and PPFD decreased. The results suggest that a discrepancy between RuBPCO kinetics and gas exchange is due to a diffusion resistance for CO2 across the chloroplast envelope which decreases with increasing temperature. At low CO2 partial pressure, the diffusion resistance appears to be counterbalanced by active CO2 (or HCO3) transport with high affinity and low maximum velocity. At low PPFD, CO2 partial pressure in the chloroplast stroma appears to be in equilibrium with that in the intercellular space due to low CO2 flux.  相似文献   

2.
Abstract Shifts in ?13C of the graminaceous C3 halophyte Puccinellia nuttalliana (Schultes) Hitch. can be induced by salinization. To investigate this phenomenon, three approaches were taken: assay of carboxylases, CO2-enrichment studies, and gas exchange analysis. Although ribulose-1,5-bisphosphate carboxylase activity decreased with salinity, phosphoenolpyruvate carboxylase activity did not increase and its levels were not atypical of C3 plants. When plants were grown at four NaCl concentrations under atmospheres of 310 and 1300 cm3 m?3 CO2, the CO2-enrichment enhanced the effects of salinity on ?13C. This is consistent with a biophysical explanation for salt-induced shifts in ?13C, whereby there is a steepening of the CO2 diffusion gradient into the leaf. Gas exchange analysis indicated that intercellular CO2 concentrations were depressed in the leaves of salt-affected plants. This resulted from a greatly decreased stomatal conductance coupled with only small effects on intrinsic photosynthetic capacity. Water-use efficiency was enhanced.  相似文献   

3.
4.
5.
Soybean plants (Glycine max (L.) Merr. c.v. Williams) were grown in CO2 controlled, natural-light growth chambers under one of four atmospheric CO2 concentrations ([CO2]): (1) 250 μmol mol–1 24 h d–1[250/250]; (2) 1000 μmol mol–1 24 h d–1[1000/1000]; (3) 250 μmol mol–1 during daylight hours and 1000 μmol mol–1 during night-time hours [250/1000] or (4) 1000 μmol mol–1 during daylight hours and 250 μmol mol–1 during night-time hours [1000/250]. During the vegetative growth phase few physiological differences were observed between plants exposed to a constant 24 h [CO2] (250/250 and 1000/1000) and those that were switched to a higher or lower [CO2] at night (250/1000 and 1000/250), suggesting that the primary physiological responses of plants to growth in elevated [CO2] is apparently a response to daytime [CO2] only. However, by the end of the reproductive growth phase, major differences were observed. Plants grown in the 1000/250 regime, when compared with those in the 1000/1000 regime, had significantly more leaf area and leaf mass, 27% more total plant dry mass, but only 18% of the fruit mass. After 12 weeks of growth these plants also had 19% higher respiration rates and 32% lower photosynthetic rates than the 1000/1000 plants. As a result the ratio of carbon gain to carbon loss was reduced significantly in the plants exposed to the reduced night-time [CO2]. Plants grown in the opposite switching environment, 250/1000 versus 250/250, showed no major differences in biomass accumulation or allocation with the exception of a significant increase in the amount of leaf mass per unit area. Physiologically, those plants exposed to elevated night-time [CO2] had 21% lower respiration rates, 14% lower photosynthetic rates and a significant increase in the ratio of carbon gain to carbon loss, again when compared with the 250/250 plants. Biochemical differences also were found. Ribulose-1,5-bisphosphate carboxylase/ oxygenase concentrations decreased in the 250/ 1000 treatment compared with the 250/250 plants, and phosphoenolpyruvate carboxylase activity decreased in the 1000/250 compared with the 1000/1000 plants. Glucose, fructose and to a lesser extent sucrose concentrations also were reduced in the 1000/250 treatment compared with the 1000/1000 plants. These results indicate that experimental protocols that do not maintain elevated CO2 levels 24 h d–1 can have significant effects on plant biomass, carbon allocation and physiology, at least for fast-growing annual crop plants. Furthermore, the results suggest some plant processes other than photosynthesis are sensitive to [CO2] and under ecologically relevant conditions, such as high night-time [CO2], whole plant carbon balance can be affected.  相似文献   

6.
7.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages.  相似文献   

8.
Carbon: terrestrial C4 plants   总被引:1,自引:1,他引:0  
The carbon isotope composition of terrestrial C4 plants depends on the primary carboxylation of phosphoenolpyruvate (PEP) and on the diffusion of CO2 to the carboxylation sites, but is also influenced by the final carboxylation of ribulose-1,5-bisphosphate (RuBP). Several models have been used for reproducing this complex situation. In the present review, a particular model is applied as a means to interpret the effects of environmental and genetically determined factors on carbon isotope discrimination during C4 photosynthesis. As a new feature, the model considers four types of limitation of the overall CO2 assimilation rate. Both carboxylation reactions are assumed to be limited by either maximum enzyme activity or maximum substrate regeneration rate. The model is applied to experimental data on the effects of CO2, irradiance and water stress on short-term discrimination by leaves of several C4 species measured simultaneously with CO2 gas exchange characteristics. In particular, different patterns of the influence of low irradiances on carbon isotope discrimination are interpreted as due to variations in that irradiance at which a transition from limitation by PEP regeneration rate and RuBP carboxylase activity to limitation by the regeneration rates of both substrates occurs. After discussing literature data on the effects of environmental conditions on carbon isotope discrimination by C4 plants seasonal and developmental changes in carbon isotope composition, studies on the systematic and geographic distribution of C4 plants, evolutionary and genetical aspects, and some ecological implications are reviewed.  相似文献   

9.
CO2 and intracellular pH   总被引:2,自引:2,他引:0  
Abstract The experimental determination of cytoplasmic and vacuolar pH values is discussed. Despite variation in these values evidence indicates that intracellular pH values are normally regulated within narrow limits. The regulatory mechanisms proposed involve the metabolic consumption of OH& and the active efflux of H +. The evidence for intracellular pH modification in response to CO2 hydration and the production of HCO?3 and H+ is examined. Theoretical calculations and experimental data indicate that CO2 concentrations as high as 5% will lower intracellular pH. Conversely, variation in CO2 levels around atmospheric concentrations is unlikely to perturb intracellular pH. High CO2 levels are found in bulky tissues, and flooded root systems. Evidence is presented that the slow diffusion of dissolved CO2 compared to gaseous CO2 results in its accumulation. It is proposed that the accumulation of respiratory CO2 may reduce intracellular pH values when plant tissues, cells or protoplasts are maintained in a liquid culture medium. Finally, the possible role of dark CO2 fixation and organic acid synthesis in the regulation of intracellular pH is examined.  相似文献   

10.
Fruiting structures of a number of legumes including chickpea are known to carry out photosynthetic CO2 assimilation, but the pathway of CO2 fixation and particularly the role of phosphoenolpyruvate carboxylase (EC 4.1.1.31) in these tissues is not clear. Activities of some key enzymes of the Calvin cycle and C4 metabolism, rates of 14CO2 fixation in light and dark, and initial products of photosynthetic 14CO2 fixation were determined in podwall and seedcoat (fruiting structures) and their subtending leaf in chickpea (Cicer arietinum L.). Compared to activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and other Calvin cycle enzyme, viz. NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), NAD+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and ribulose-5-phosphate kinase (EC 2.7.1.19), the levels of phosphoenolpyruvate carboxylase and other enzymes of C4 metabolism viz. NADP+-malate dehydrogenase (EC 1.1.1.82), NAD+-malate dehydrogenase (EC 1.1.1.37), NADP+ malic enzyme (EC 1.1.1.40), NAD+-malic enzyme (EC 1.1.1.39), glutamate oxaloacetate transaminase (EC 2.6.1.1) and glutamate pyruvate transaminase (EC 2.6.1.2), were generally much higher in podwall and seedcoat than in the leaf. Podwall and seedcoat fixed 14CO2 in light and dark at much higher rates than the leaf. Short-term assimilation of 14CO2 by illuminated fruiting structures produced malate as the major labelled product with less labelling in 3-phosphoglycerate, whereas the leaf showed a major incorporation into 3-phosphoglycerate. It seems likely that the fruiting structures of chickpea utilize phosphoenolpyruvate carboxylase for recapturing the respired carbon dioxide.  相似文献   

11.
Carbon isotope discrimination in C3-C4 intermediates   总被引:1,自引:1,他引:0  
Carbon isotope discrimination in C3–C4 intermediates is determined by fractionations during diffusion and the biochemical fractionations occurring during CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation occurring in the bundle sheath, the extent of bundle-sheath leakiness and the contribution which C4-cycle activity makes to the CO2 pool there. In most instances, carbon isotope discrimination in C3–C4 intermediates is C3-like because only a small fraction of the total carbon fixed is fixed in the bundle sheath. In particular, this must be the case for Flaveria intermediates which initially fix substantial amounts of CO2 into C4-acids. In C3–C4 intermediates that refix photorespiratory CO2 alone, it is possible for carbon isotope discrimination to be greater than in C3-species, particularly at low CO2 pressures or at high leaf temperatures. Short-term measurements of carbon isotope discrimination and gas exchange of leaves can be used to study the photosynthetic pathways of C3-C4 intermediates and their hybrids as has recently been done for C3 and C4 species.  相似文献   

12.
C4 photosynthesis at low temperatures   总被引:12,自引:8,他引:4  
Abstract. C4 plants grown in optimum conditions are, by comparison to C3, capable of higher maximum dry-matter yields and greater efficiencies of water and nitrogen use, yet they are rare outside the subtropics. Both latitudinal and altitudinal limits of C4 distributions correlate most closely with a mean minimum temperature of 8-10°C during the period of active growth. The possibility that the C4 process is inherently incapable of functioning at low temperatures is examined. The reversible effects of chilling on the quantum efficiency of C4 photosynthesis and the functioning of the individual steps in the C4 cycle are examined. Chilling also produces an irreversible loss of capacity to assimilate CO2 which is directly proportional to the light received during chilling. It is suggested that the reversible reduction in capacity to assimilate CO2 and the lack of an alternative pathway for the utilization of lightgenerated reducing power may make C4 species more prone to chilling-dependent photoinhibition. Laboratory studies and limited field observations suggest that this damage would be most likely to occur during photosynthetic induction at the temperatures and light levels encountered on clear, cool mornings during the spring and early summer in cool climates. Even those C4 species occurring naturally in cool climates do not appear fully capable of tolerating these conditions; indeed their growth patterns suggest that they may be adapted by avoiding 'rather than enduring' such conditions.  相似文献   

13.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

14.
15.
The effects of selective D1 and D2 dopaminergic agents on the extracellular acetylcholine (ACh) content in striata of freely moving rats were determined by the microdialysis technique. LY 171555, a selective D2 agonist, reduced ACh output by approximately 30% within 20 min at the dose of 0.2 mg/kg, i.p., whereas the D2 antagonists (-)-remoxipride (10 mg/kg, s.c.) and L-sulpiride (50 mg/kg, i.p.) induced maximal increases of approximately 50% within 10 and 20 min, respectively. In contrast, the D1 antagonist SCH 23390 (0.25 mg/kg, s.c.) decreased the extracellular ACh content by approximately 30% in 20 min, but lower doses--0.025 and 0.05 mg/kg--had no such effect. The stimulation of ACh release by LY 171555 was prevented by (-)-remoxipride but not by SCH 23390 (0.25 mg/kg, s.c.). In addition, the D1 agonist SKF 38393 failed to modify the ACh increasing effect of (-)-remoxipride. Thus, the D1 and D2 receptors subserve opposing functions on ACh release. The D1/D2 dopaminergic agonist R-apomorphine, at the does of 1 mg/kg, i.p., reduced ACh output by approximately 35% only when D1 receptors were blocked by SCH 23390 (0.025 mg/kg, s.c.). The results provide clear in vivo evidence of the tonic inhibition exerted by dopaminergic nigrostriatal input on the cholinergic system of the basal ganglia through D1 and D2 receptors.  相似文献   

16.
17.
18.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

19.
20.
The effect of SO2 on the extractable activity of ATP sulfurylase (EC 2.7.7.4.). adenosine 5'-phosphosulfate sulfotransferase, ribulosebisphosphate carboxylase, chlorophyll, protein, sulfate, and amino acids was examined in leaves of potted grafts of beech ( Fagus sylvatica L.) treated in outdoor fumigation chambers. Addition of 0.025 and 0.075 μl SO2 1−1 to unfiltered ambient air caused a decrease in the extractable activity of adenosine 5'-phosphosulfate sulfotransferase to about 20 to 30% of the controls. Neither the extractable activity of ATP sulfurylase and ribulosebisphosphate carboxylase nor the content in chlorophyll, total amino acids and protein were significantly affected by SO2, but there was an increase in the sulfate content. Leaves treated with 0.075 μl SO2 1−1 contained more alanine and cysteine and less serine than the controls. After transfer of the SO2-treated beech trees to control chambers there was an increase in adenosine 5'-phosphosulfate sulfotransferase activity, but no significant decrease in SO2−4-sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号