首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of an early stage of actin polymerization by actobindin   总被引:3,自引:0,他引:3  
Actobindin, a 25,000-dalton dimeric protein purified from Acanthamoeba castellanii was previously shown to form a 1:1 molar complex with both Acanthamoeba and rabbit muscle G-actin with KD values of about 5 and 7 microM, respectively, and not to interact with F-actin (Lambooy, P. K., and Korn, E. D. (1986) J. Biol. Chem. 261, 17150-17155). We now find that actobindin is a much more potent inhibitor of the early phases of polymerization of both Acanthamoeba and muscle G-actin than can be accounted for by its binding to G-actin. Actobindin inhibits the polymerization of both G-ATP-actin and G-ADP-actin, and has little, if any, effect on the rate of ATP hydrolysis that accompanies polymerization of G-ATP-actin. The kinetics of actin polymerization in the presence of actobindin are qualitatively consistent with the postulation that actobindin binds reversibly to and inhibits the elongation of an intermediate between G-actin and F-actin, perhaps a small oligomer(s) or a species in equilibrium with such an intermediate. This hypothesis implies the, at least transient, existence of an actin species with properties different from those of monomers and filaments. Actobindin may, then, provide a useful experimental tool for investigating the still relatively obscure early steps in actin polymerization. Irrespective of its mechanism of action, actobindin might serve in situ to reduce the rate of actin polymerization de novo while having relatively little effect on the rates of elongation of existing filaments or from actobindin-resistant nucleating sites.  相似文献   

3.
The effects of short wave ultraviolet (UV)-induced DNA lesions on the catalytic activity of Drosophila melanogaster topoisomerase II were investigated. The presence of these photoproducts impaired the enzyme's ability to relax negatively supercoiled pBR322 plasmid molecules. As determined by DNA photolyase-catalyzed photoreactivation experiments, enzyme inhibition was due to the presence of cyclobutane pyrimidine dimers in the DNA. When 10-20 cyclobutane dimers were present per plasmid, the initial velocity of topoisomerase II-catalyzed DNA relaxation was inhibited approximately 50%. Decreased relaxation activity correlated with an inhibition of the DNA strand passage step of the enzyme's catalytic cycle. In contrast, UV-induced photoproducts did not alter the prestrand passage DNA cleavage/religation equilibrium of topoisomerase II either in the absence or presence of antineoplastic agents. Results of the present study demonstrate that the repair of cyclobutane pyrimidine dimers is important for the efficient catalytic function of topoisomerase II.  相似文献   

4.
5.
A quantum-classical molecular dynamics model (QCMD), applying explicit integration of the time-dependent Schr?dinger equation (QD) and Newtonian equations of motion (MD), is presented. The model is capable of describing quantum dynamical processes in complex biomolecular systems. It has been applied in simulations of a multistep catalytic process carried out by phospholipase A(2) in its active site. The process includes quantum-dynamical proton transfer from a water molecule to histidine localized in the active site, followed by a nucleophilic attack of the resulting OH(-) group on a carbonyl carbon atom of a phospholipid substrate, leading to cleavage of an adjacent ester bond. The process has been simulated using a parallel version of the QCMD code. The potential energy function for the active site is computed using an approximate valence bond (AVB) method. The dynamics of the key proton is described either by QD or classical MD. The coupling between the quantum proton and the classical atoms is accomplished via Hellmann-Feynman forces, as well as the time dependence of the potential energy function in the Schr?dinger equation (QCMD/AVB model). Analysis of the simulation results with an Advanced Visualization System revealed a correlated rather than a stepwise picture of the enzymatic process. It is shown that an sp(2)--> sp(3) configurational change at the substrate carbonyl carbon is mostly responsible for triggering the activation process.  相似文献   

6.
A number of metals have been shown to be involved in the etiology of animal and human neoplasms. The molecular mechanisms have not yet been determined, but the observed plethora of genetic effects observed following treatment of mammalian cells with metals clearly indicates the possibility that metals can exert their effects at least partially at the level of DNA metabolism. Several studies have suggested that metal treatment may inhibit normal DNA repair processes in procaryotic and eucaryotic cells but a systematic study of this question has not previously been conducted. The present study surveyed the ability of 15 metal salts to interfere with repair of X-ray or UV-induced DNA damage in HeLa cells. Hg++, As+++, Cu++, Ni++, Co++, and Cd++ were shown to inhibit the excision of pyrimidine dimers from DNA and to do so in a dose-dependent fashion. Inhibition of repair by only Ni++ and Co++ resulted in the accumulation of long-lived DNA strand breaks suggestive of a block in the gap-filling stage of repair. Ability to inhibit repair was not correlated with cytotoxicity. X-ray repair was sensitive to Hg++, Ni++, As+++, Ga++, Zn++, and Mo(VI). All inhibitory metals inhibited closure of single strand DNA breaks. Ga++ appeared, in addition, to inhibit a later step involving chromatin reconstitution. These findings support the notion that interference of DNA repair processes may be a consequence of exposure of mammalian cells to certain metals. This may be a factor in the etiology of metal-associated carcinogenesis.  相似文献   

7.
The interaction of Mebendazole (methyl-5-benzoyl benzimidazole-2-carbamate), a new antihelminthic drug, with tubulin was studied. Ultramicroscopic and turbidimetric evidence shows an inhibitory effect of Mebendazole on the “in vitro” polymerization of tubulin. Scatchard plot analysis shows a single binding site for Mebendazole per tubulin dimer. This site has an affinity constant of 2.8 × 105 M?1. Competition experiments demonstrate that this binding site is the same as for Colchicine, even when both compounds are not chemically related. Mebendazole is proposed as a useful tool for the study of tubulin assembly.  相似文献   

8.
Phenolics derived from lignin and other plant components can pose significant inhibition on enzymatic conversion of cellulosic biomass materials to useful chemicals. Understanding the mechanism of such inhibition is of importance for the development of viable biomass conversion technologies. In native plant cell wall, most of the phenolics and derivatives are found in polymeric lignin. When biomass feedstocks are pretreated (prior to enzymatic hydrolysis), simple or oligomeric phenolics and derivatives are often generated from lignin modification/degradation, which can inhibit biomass-converting enzymes. To further understand how such phenolic substances may affect cellulase reaction, we carried out a comparative study on a series of simple and oligomeric phenolics representing or mimicking the composition of lignin or its degradation products. Consistent to previous studies, we observed that oligomeric phenolics could exert more inhibition on enzymatic cellulolysis than simple phenolics. Oligomeric phenolics could inactivate cellulases by reversibly complexing them. Simple and oligomeric phenolics could also inhibit enzymatic cellulolysis by adsorbing onto cellulose. Individual cellulases showed different susceptibility toward these inhibitions. Polyethylene glycol and tannase could respectively bind and degrade the studied oligomeric phenolics, and by doing so mitigate the oligomeric phenolic's inhibition on cellulolysis.  相似文献   

9.
10.
Procedures for a consecutive reaction catalyzed by fumarase and followed by aspartase in ammonium fumarate buffer to facilitate the separation of product have been developed. Fumarate was converted to L-malate in 83%, and the rest of the starting material was converted to aspartate in 16.7% to make a total conversion of 99.7%. After the solvent was evaporated, the malic acid was dissolved in acetone, and the aspartic acid was insoluble. A simple filtration could separate both products.  相似文献   

11.
This work reports a novel strategy for the development of an O2-rich biosensor. The principle is based on an enzymatic reaction between catalase and H2O2 to release O2, thus to increase the O2 amount in the enzyme matrix. This method improves the determination reliability by alleviating the O2 dependence.  相似文献   

12.
We have used alpha-oligomers as antisense oligonucleotides complementary to three different sequences of the rabbit beta-globin mRNA: a region adjacent to the cap site, a region spanning the AUG initiation codon or a sequence in the coding region. These alpha-oligonucleotides were synthesized either with a free 5' OH group or linked to an acridine derivative. The effect of these oligonucleotides on mRNA translation was investigated in cell-free extracts and in Xenopus oocytes. In rabbit reticulocyte lysate and in wheat germ extracts oligomers targeted to the cap site and the initiation codon reduced beta-globin synthesis in a dose-dependent manner, whereas the target mRNA remained intact. The anti-cap alpha-oligomer was even more efficient that its beta-counterpart in rabbit reticulocyte lysate. In contrast, only the alpha-oligomer, linked to the acridine derivative, complementary to the cap region displayed significant antisense properties in Xenopus oocytes. Therefore initiation of translation can be arrested by oligonucleotide/RNA hybrids which are not substrates for RNase-H.  相似文献   

13.
14.
We have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 degrees C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 degrees C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating step(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 degrees C with [3H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 degrees C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures.  相似文献   

15.
Inhibition of actin polymerization by latrunculin A   总被引:25,自引:0,他引:25  
Latrunculin A, a toxin purified from the red sea sponge Latrunculia magnifica, was found previously to induce striking reversible changes in the morphology of mammalian cells in culture and to disrupt the organization of their microfilaments. We now provide evidence that latrunculin A affects the polymerization of pure actin in vitro in a manner consistent with the formation of a 1:1 molar complex between latrunculin A and G-actin. The equilibrium dissociation constant (Kd) for the reaction in vitro is about 0.2 microM whereas the effects of the drug on cultured cells are detectable at concentrations in the medium of 0.1-1 microM.  相似文献   

16.
A recombinant cutinase from Fusarium solani pisi was immobilized by adsorption on several zeolites and its activity towards the alcoholysis reaction of butyl acetate with hexanol, in organic media (isooctane), was measured as a function of the water content and water activity. The effects of the zeolite framework composition (including cation nature) and acidity were studied. The results were compared with other commonly used supports: polyamide Accurel-PA6, silica and alumina. Both the nature of the cation and the silica:alumina (Si:Al) ratio of the framework revealed to be important parameters. The most promising results were obtained for supports with little acidity and with lower Si:Al ratio. This last observation is in accordance with the results obtained with silica and alumina.  相似文献   

17.
Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inhibits protein synthesis in perfused rat liver at doses ranging from 2 to 6%. A marked disaggregation of polysomes occurs, indicating that inhibition of translation initiation plays a key role. Dose- and time-dependent alterations that decrease the function of a variety of translation initiation processes are observed. At 6% halothane, a rapid and persistent increase in phosphorylation of the alpha-subunit of eukaryotic translation initiation factor (eIF)2 occurs. This is accompanied by inhibition of activity of the guanine nucleotide exchange factor eIF2B that is responsible for GDP-GTP exchange on eIF2. At lower doses, neither eIF2alpha phosphorylation nor eIF2B activity is altered. After extended exposure to 6% halothane, alterations in two separate responses regulated by the target of rapamycin pathway occur: 1) redistribution of eIF4E from its translation-stimulatory association with eIF4G to its translation-inactive complex with eIF4E-binding protein-1; and 2) decreased phosphorylation of ribosomal protein S6 (rpS6) with a corresponding decrease in active forms of a kinase that phosphorylates rpS6 (p70(S6K1)). Changes in the association of eIF4E and eIF4G are observed only after extended exposure to low anesthetic doses. Thus dose- and time-dependent alterations in multiple processes permit liver cells to adapt translation to variable degrees and duration of stress imposed by anesthetic exposure.  相似文献   

18.
Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号