首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

2.
Journal of Plant Growth Regulation - Ca2+ stimulates 1-aminocyclopropane-1-carboxylic acid (ACC)- and indole-3-acetic acid (IAA)-dependent ethylene production in mung bean hypocotyls and senescing...  相似文献   

3.
Brassinosteroid (BR) and indole-3-acetic acid (IAA) were used in combination with Ca2+ in order to determine if there was a synergistic effect in the stimulation of ethylene production in etiolated mung bean ( Vigna radiata L. Rwilez ev. Berken) hypocotyl segments. Ca2+ was found to act synergistically with BR. IAA or a combination of the two in promoting a stimulation in ethylene production. EDTA, which chelates Ca2+, greatly reduced the effectiveness of calcium salts in promoting ethylene production in the presene of either BR, IAA or a combination of the two. Neither K+, Mg2+ nor Mn24 (chloride salts) acted synergistically with BR and IAA.  相似文献   

4.
(p-Chlorophenoxy)isobutyric acid (PCIB) inhibited indole-3-acetic acid (IAA)-induced ethylene production in etiolated mung bean hypocotyl sections. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC) was not significantly affected by PCIB, indicating that PCIB exerted its effect primarily by inhibiting the activity of the ethylene-forming enzyme (EFE). This conclusion was supported by the observations that PCIB inhibited the conversion of exogenously applied ACC to ethylene. The inhibitory effect of PCIB was already evident with 0.05 mM PCIB, and it increased with time after application of the inhibitor. PCIB also significantly inhibited ethylene production in apple fruit tissues, but it only slightly reduced the level of endogenous ACC. Similar to mung bean, EFE activity in apple tissue was significantly inhibited by PCIB. The possibility that PCIB also inhibits auxin-induced ACC synthase activity is discussed.  相似文献   

5.
Several brassinosteroid (BR) analogues, cholesterol and aldosterone were evaluated for their effectiveness alone and in combination with indole-3-acetic acid (IAA) in stimulating ethylene production by etiolated mung bean ( Vigna radiata L. Rwilcz cv. Berken) hypocotyl segments. Changing the conformation of the two hydroxyl groups on C-22 and C-23 positions from α to β did not greatly reduce the efficiency of these compounds to stimulate ethylene production alone or in combination with IAA. There was little difference in activity observed when the conformation of the methyl group in the C-24 position was changed from α to β. However, when hydroxyls were deleted from the side chain in the C-22 and C-23 positions, the compound was rendered inactive alone or in combination with IAA. The compound was also inactivated by removing the 7-oxa function on the B-ring and by substituting an ethyl group for the methyl group in the C-24 position. Both aldosterone and cholesterol were ineffective in promoting ethylene production. This study shows that very stringent structural features are required for a steroid to have BR-like activity and to act synergistically with auxin in the promotion of ethylene synthesis.  相似文献   

6.
Kinetin has been shown to act synergistically with indole-3-acetic acid (IAA) or calcium ion (Ca2+) to stimulate ethylene production. Several commercially available cytokinins (kinetin, kinetin-riboside, benzyladenine, benzyladenine-riboside, isopentenyladenine, isopentenyladenine-riboside, and zeatin) as well as noncytokinin bases (adenine and xanthine) were administered to mung bean (Phaseolus aureus Roxb.) hypocotyls to study their effects, alone or in combination with IAA or Ca2+, on ethylene production. In the presence of IAA or Ca2+, all cytokinins tested synergistically stimulated ethylene production and were as effective or nearly as effective as kinetin. Noncytokinin bases (adenine and xanthine) were, however, inactive in this system.  相似文献   

7.
Stable free radicals, together with horseradish peroxidase, promoted degradation of indole-3-acetic acid (IAA). These reactions were retarded by the free radical scavengers Bromoxynil, Na-benzoate and kinetin. Certain free radicals promoted, but the free radical scavenger Bromoxynil retarded ethylene production in apple slices and mung bean stem tissues. The interdependency of free radicals and free radical scavengers in systems controlling IAA levels and ethylene production is discussed.  相似文献   

8.
Fusicoccin, an inhibitor of brassinosteroid-induced ethylene production   总被引:2,自引:0,他引:2  
Fusicoccin was evaluated for its effects on brassinosteroid (BR), indole-3-acetic acid (IAA) and BR + IAA-induced ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC-synthase production by etiolated mung bean ( Vigna radiata L. Rwilez cv. Berken) hypocotyl segments. Fusicoccin inhibition of ethylene and ACC production induced by 2 μ M BR started at concentrations as low as 0.05 μ M . Maximum inhibition occurred at a 1 μ M concentration with no further inhibition at higher concentrations tested. Fusicoccin (1 μ M ) was effective in the inhibition of BR-induced ethylene, ACC and ACC-synthase production at low and high concentrations of BR.
Fusicoccin at concentrations as high as 2 μ M had no effect on ethylene and ACC production promoted by low concentrations of IAA (1 to 10 μ M ). When higher concentrations (100–1000 μ M ) of IAA were used, fusicoccin (1 μ M ) had an inhibitory effect on ethylene and ACC production. Interestingly, fusicoccin (1 μ M ) had little or no effect on ACC-synthase promoted by high concentrations of IAA (1000 μ M ).
When BR and IAA were used in combination, fusicoccin inhibited ethylene and ACC production at concentrations as low as 0.05 μ M with maximum inhibition occurring at 0.5 μ M . At a 1 μ M concentration, fusicoccin was effective in inhibiting the synergistic stimulation of ACC-synthase promoted by BR and IAA.  相似文献   

9.
10.
Lau OL  Yang SF 《Plant physiology》1973,51(6):1011-1014
In hypocotyl segments of mung bean (Phaseolus mungo L.) seedlings, exogenously supplied indoleacetic acid was rapidly conjugated mainly into indoleacetylaspartic acid, which was inactive in inducing ethylene production. Kinetin is known to stimulate indoleacetic acid-induced ethylene production. The mechanism of kinetin action on indoleacetic acid-induced ethylene production by hypocotyl segments of mung bean seedlings was studied in relation to indoleacetic acid uptake and indoleacetic acid metabolism. Kinetin enhanced indoleacetic acid uptake during the initial 2-hour incubation and markedly suppressed the conversion of indoleacetic acid to indoleacetic acid conjugates throughout the whole 7-hour incubation. As a result, there was more free indoleacetic acid and less conjugated indoleacetic acid in the segments treated with kinetin than in those receiving no kinetin. A close relationship was demonstrated between the rate of ethylene production and the level of free indoleacetic acid, which was regulated by kinetin.  相似文献   

11.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

12.
Purified malformin A1 (cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-lle), a cyclicpentapeptide toxin fromAspergillus niger, was applied to the hypocotyl segments of mung bean (Vigna radiata L.) seedlings to investigate its role in regulating ethylene biosynthesis. Production of ethylene was induced by treating the plants with 0.1 mM indole-3-acetic acid (1AA). When 0.1 μM malformin A1 was then applied, ethylene production increased and the activities of two key enzymes for its biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase (ACS) and ACC-oxidase (ACO), were also stimulated. However, at levels of 1 or 10 μM malformin A1, both ethylene production and enzymatic activities were significantly reduced. In the case of ACO,in vitro activity was regulated by malformin A1, independent of ACS activity or the influence of IAA. Furthermore, the conjugate form of ACC, N-malonyl ACC, was significantly promoted by treatment with 0.1 μM malformin A1. These data suggest that malformin A1 can modulate ethylene production through diverse paths and that its effect depends on the concentration of the treatment administered.  相似文献   

13.
The effect of two auxin antagonists, 2,3,5-triiodobenzoic acid (TIBA) and 2-( p -chlorophenoxy)-2-methyl propionic acid (CMPA) on IAA-induced ethylene production in etiolated mung bean hypocotyl ( Vigna radiata L. Rwilcz cv. Berken) segments was studied. Both TIBA and CMPA inhibited IAA-induced ethylene production and CO2 production at concentrations from 0.001 m M to 0.1 m M and 0.01 m M to 1.0 m M , respectively. The optimum concentration for inhibition of ethylene production by TIBA was 0.05 m M and CMPA was 0.5 m M . At the optimum concentration of TIBA and CMPA, there was a significant decrease in IAA-induced ethylene production without a decrease in respiration rates below control levels. After 18 h, mung bean hypocotyl segments treated with 0.05 m M TIBA for 6 h or 0.5 m M CMPA for 8 h showed a maximum inhibition of IAA-induced ethylene production. Treatments longer than 8 h caused no further inhibition. The uptake of [14C]-naphthaleneacetic acid by mung bean segments was greatly reduced by the addition of either TIBA (0.05m M ) or CMPA (0.5 m M ) to the incubation media. The results of treatment sequences showed that TIBA needed to be applied prior to IAA in order to inhibit IAA-induced ethylene production, but CMPA caused the same inhibitory effect whether applied before or after IAA treatment. These findings provide evidence that TIBA inhibits auxin-induced ethylene production in etiolated mung bean hypocotyl segments by blocking auxin movement into the tissue whereas CMPA may work on both auxin transport and action.  相似文献   

14.
Inhibition of ethylene production by cobaltous ion   总被引:10,自引:13,他引:10       下载免费PDF全文
Lau OL  Yang SF 《Plant physiology》1976,58(1):114-117
The effect of Co2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co2+, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca2+, kinetin plus Ca2+, or Cu2+ treatments in mung bean hypocotyl segments. While Co2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni2+, which belongs to the same group as Co2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues.  相似文献   

15.
A cDNA clone of an auxin up-regulated gene, ARG8 , was isolated from hypocotyl sections of etiolated mung bean [ Vigna radiata (L.) Wilczek] seedlings by differential screening. The deduced amino acid sequence suggested that ARG8 may encode a cell wall protein. The steady state mRNA level of ARG8 increased by treatment of hypocotyl sections not only with indole-3-acetic acid (IAA) but also with fusicoccin, and the auxin inducibility was inhibited by the addition of 0.3 M mannitol in the incubation medium. This indicated that it was not auxin but elongation that regulated the expression of ARG8 . The promoter activity of the 5'-flanking region of ARG8 was determined by assaying the transient expression of a luciferase fusion gene that was introduced into mung bean hypocotyl sections by the particle bombardment technique. The basal activity of the ARG8 upstream region was about a few tenths of that of a modified cauliflower mosaic virus 35S promoter, and it was increased a few fold by treatment with IAA. The auxin inducibility was completely suppressed by the addition of mannitol. A 5'-deletion analysis showed that a 53-bp region in the ARG8 promoter was important for the basal and elongation-dependent promoter activities.  相似文献   

16.
Auxin-induced ethylene biosynthesis and its regulatory stepsin etiolated mung bean hypocotyl segments were examined. Theendogenous content of 1-aminocyclopropane- 1-carboxylic acid(ACC), an immediate precursor of ethylene, increased correspondingto the rate of ethylene production. Benzyladenine (BA), whichis a synergistic stimulator of auxin-induced ethylene production,increased the ACC content parallel to the rate of ethylene productionin the presence of IAA, but failed to increase the ACC contentin the absence of IAA while ethylene production was significantlystimulated by BA. Abscisic acid (ABA) inhibited the formationof ACC. The ACC synthase activity in the tissue was increasedby IAA, and the increase was further promoted by the presenceof BA. Cycloheximide severely inhibited the development of auxin-inducedACC synthase. The enzymatic properties of mung bean ACC synthasewere similar to those of the tomato fruit enzyme. Aminoethoxyvinylglycine(AVG) and aminooxyacetic acid, which inhibit the ACC synthasereaction, stimulated the development of ACC synthase. The regulatorymechanisms of the growth regulators are discussed in relationto ACC formation. (Received December 3, 1980; Accepted January 22, 1981)  相似文献   

17.
The nature of the products of the auxin catabolism mediated by both basic and acidic isoperoxidases has been studied. While indole-3-methanol is only a minor product of the oxidation of indole-3-acetic acid catalyzed by extracellular acidic isoperoxidases, it is the only product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases (EC 1.11.1.7) from lupin (Lupinus albus L.) hypocotyls. The putative indole-3-methanol formed by these latter isoperoxidases was isolated and then characterized by mass spectrometry and 1H-nuclear magnetic resonance spectrometry. These results are discussed with respect to the diversity and compartmentation of the catabolism of indole-3-acetic acid in plant tissues.Abbreviations DCP 2,4-dichlorophenol - IAA indole-3-acetic acid - IM indole-3-methanol  相似文献   

18.
A prior study (13) from this laboratory showed that oxidation of exogenously applied indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA) is the major catabolic pathway for IAA in Zea mays endosperm. In this work, we demonstrate that OxIAA is a naturally occurring compound in shoot and endosperm tissue of Z. mays and that the amount of OxIAA in both shoot and endosperm tissue is approximately the same as the amount of free IAA. Oxindole-3-acetic acid has been reported to be inactive in growth promotion, and thus the rate of oxidation of IAA to OxIAA could be a determinant of IAA levels in Z. mays seedlings and could play a role in the regulation of IAA-mediated growth.  相似文献   

19.
Effect of glyphosate on ethylene production in tobacco callus   总被引:9,自引:0,他引:9       下载免费PDF全文
Lee TT  Dumas T 《Plant physiology》1983,73(3):855-857
Glyphosate (N-phosphonomethylglycine) caused a significant decrease or a slight increase in ethylene production in tobacco callus (Nicotiana tabacum L.) depending on the concentration of indole-3-acetic acid (IAA) present in the medium. IAA stimulated ethylene production, but a pretreatment with glyphosate greatly reduced the IAA-induced ethylene production. Inasmuch as glyphosate treatment promoted the metabolism of IAA, the decrease in ethylene production induced by glyphosate is attributed to the rapid loss of free IAA in the treated tissue.  相似文献   

20.
(+)-5-Hydroxy-dioxindole-3-acetic acid (1) was isolated from rice bran as a substance synergistic with auxin in the auxin induced ethylene production by etiolated mungbean hypocotyl segments. 5-Hydroxy-oxindole-3-acetic acid (4) and IAA were also obtained. The importance of a hydroxyl group in the 5-position in the two compounds was suggested since synthesized (±)-dioxindole-3-acetic acid (6) was inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号