首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
A selection of fungicides, herbicides and surfactants and urea were tested for their effect on the production of pseudothecia and ascospore release of Leptosphaeria maculans present on oil-seed rape straw and turnip seed crop straw. The fungicides ethyl mercury phosphate, triarimol, fenarimol, carbendazim, tridemorph and benomyl, each at 1 g/litre, the herbicides dinoseb and diquat, each at 10 g/litre the surfactants Bradasol, Cetrimide, Deciquam 222, Hyamine 1622 and Maxonol N, each at 50 g product/litre, and urea at 150 g/litre, applied to straw before pseudothecia had formed were more than 90% effective in preventing further development. These chemicals were also effective in preventing further ascospore production when applied to straw bearing mature pseudothecia but only dinoseb and urea prevented the release of mature ascospores. The results suggest that it may be possible to break the life cycle of L. maculans by chemical treatment and thereby obviate the need for subsequent control measures.  相似文献   

2.
Pseudothecia of Didymella fabae, the teleomorph of Ascochyta fabae, were first observed on faba bean (Vicia faba) debris in Spain during autumn 1995. Most pseudothecia were mature by December–February. The ascospores gave rise to typical cultures of A. fabae, and conidia from these cultures caused ascochyta blight symptoms on inoculated faba bean plants. Placing straw‐bearing pseudothecia over the plants to allow ascospore discharge also resulted in typical ascochyta blight symptoms. Pseudothecia maturity and discharge of ascospores from the infested faba bean straw overlapped with the vegetative stage of the faba bean crop, which occurs in southern Spain during winter as the crop is sown in autumn and harvested in spring. These observations indicate that ascospores may serve as primary inoculum for the disease.  相似文献   

3.
Mycelium of Leptosphaeria maculans survived on oilseed rape stem base debris buried in sand for 2,4, 6, 8,10 or 12 months and produced pseudothecia after subsequent exposure on the surface of the ground under natural conditions for 2–4 months, but did not survive on upper stem debris buried for 2 months. Only A‐group L. maculans ascospores were produced on the stem base debris which had been buried; no B‐group ascospores were produced. Mycelium of L. maculans survived on both stem base and upper stem debris exposed on the sand surface for 2, 4, 6, 8, 10 or 12 months and pseudothecia with viable ascospores were observed at the time of sampling. Both A‐group L. maculans (predominant on stem bases) and B‐group L. maculans (predominant on upper stems) ascospores were produced on unburied stem base and upper stem debris. Thus B‐group L. maculans survived longer on unburied debris than on buried debris. A‐group ascospores which were exposed in dry air in darkness at 5–20°C survived longer than B‐group ascospores; 10–37% of A‐group ascospores, compared with 2–31% of B‐group ascospores, survived after 35 days.  相似文献   

4.
自然界甘蓝茎点霉(Phoma lingam)的有性世代为斑点小球腔菌Leptosphaeriamaculans通常形成于甘蓝属植株的越冬残茎上。在实验室内其有性阶段不易培养或需要较长的时间,而且形成假囊壳的百分率也很低。为了在实验室内能短期诱发大量L.maculans的假囊壳,本实验研究了该菌假囊壳生成的条件,创造了双层培养方法。自澳大利亚采集到有该菌假囊壳的芸苔(Brassica napus)残基,分离得到子囊孢子单孢后代数十株,同时用保存的已知交配型665(+)和666(-)为材料,研究了(+)(-)配对结合的环境条件。实验结果表明16℃的温度,近紫外光照射(黑光灯)和V_(?)麦杆琼脂培养基上可以产生少量的假囊壳。但是,若配合以双层培养,则在培养4周后可产生大量成熟的假囊壳。实验还确定了该菌在性细胞形成、交配、子囊形成和成熟等阶段对环境因子都有不同的要求。双层培养对假囊壳的发育有重要作用。前期菌体营养生长与后期假囊壳的成熟紧密相关。  相似文献   

5.
Fusarium graminearum is a predominant component of the Fusarium head blight (FHB) complex of small grain cereals. Ascosporic infection plays a relevant role in the spread of the disease. A 3-year study was conducted on ascospore discharge. To separate the effect of weather on discharge from the effect of weather on the production and maturation of ascospores in perithecia, discharge was quantified with a volumetric spore sampler placed near maize stalk residues bearing perithecia with mature ascospores; the residues therefore served as a continuous source of ascospores. Ascospores were discharged from perithecia on 70% of 154 days. Rain (R) and vapor pressure deficit (VPD) were the variables that most affected ascospore discharge, with 84% of total discharges occurring on days with R≥0.2 mm or VPD≤11 hPa, and with 70% of total ascospore discharge peaks (≥ 30 ascospores/m3 air per day) occurring on days with R≥0.2 mm and VPD≤6.35 hPa. An ROC analysis using these criteria for R and VPD provided True Positive Proportion (TPP) = 0.84 and True Negative Proportion (TNP) = 0.63 for occurrence of ascospore discharge, and TPP = 0.70 and TNP = 0.89 for occurrence of peaks. Globally, 68 ascospores (2.5% of the total ascospores sampled) were trapped on the 17 days when no ascospores were erroneously predicted. When a discharge occurred, the numbers of F. graminearum ascospores sampled were predicted by a multiple regression model with R2 = 0.68. This model, which includes average and maximum temperature and VPD as predicting variables, slightly underestimated the real data and especially ascospore peaks. Numbers of ascospores in peaks were best predicted by wetness duration of the previous day, minimum temperature, and VPD, with R2 = 0.71. These results will help refine the epidemiological models used as decision aids in FHB management programs.  相似文献   

6.
Leptosphaeria maculans and L. biglobosa are closely related sibling fungal pathogens that cause phoma leaf spotting, stem canker (blackleg) and stem necrosis of oilseed rape (Brassica napus). The disease is distributed worldwide, and it is one of the main causes of considerable decrease in seed yield and quality. Information about the time of ascospore release at a particular location provides important data for decision making in plant protection, thereby enabling fungicides to be used only when necessary and at optimal times and doses. Although the pathogens have been studied very extensively, the effect of climate change on the frequencies and distributions of their aerially dispersed primary inoculum has not been reported to date. We have collected a large dataset of spore counts from Poznan, located in central-west part of Poland, and studied the relationships between climate and the daily concentrations of airborne propagules over a period of 17 years (1998–2014). The average air temperature and precipitation for the time of development of pseudothecia and ascospore release (July–November), increased during the years under study at the rates of 0.1 °C and 6.3 mm per year. The day of the year (DOY) for the first detection of spores, as well as the date with maximum of spores, shifted from 270 to 248 DOY, and from 315 to 265 DOY, respectively. The acceleration of the former parameter by 22 days and the latter by 50 days has great influence on the severity of stem canker of oilseed rape.  相似文献   

7.
When airborne propagules of Leptosphaeria maculans and L. biglobosa were collected in Poland at three ecologically different sites from 1 September to 30 November in 2004 to 2008, using a Hirst-type seven-day volumetric spore trap, there were fluctuations in timing of ascospore release and diverse ratios between airborne propagules of both species depending on season, field location and weather conditions. The detection was done using the microscope as well as quantitative PCR with species-specific primers targeted against fragments of β-tubulin genes and quantified with a dual-labelled fluorescent probe approach. This detection chemistry is described for the first time for L. maculans and L. biglobosa. Its advantage over the previous ITS-based SYBR-Green chemistry resides in improved sensitivity and the virtual absence of false positives in the detection of these fungi. There were significant, positive correlations between data obtained using visual assessment of ascospore numbers and DNA concentrations that were measured by qPCR. Climatic differences between the oilseed rape growing regions could have significantly affected the biological processes of pseudothecial maturation and ascospore development of the pathogens. The data suggest that regular rain events of intermediate intensity recorded in the Maritime region favoured the maturation of the pathogen more than the drier weather recorded in the Silesia or Pomerania regions. It was observed that the number of rainy days was of greater importance than the cumulative rainfall to obtain the generative sporulation of the pathogen. Accurate detection of airborne inoculum of pathogenic Leptosphaeria spp. facilitates improved targeting of disease management decisions for oilseed rape protection against phoma stem canker and stem necrosis diseases.  相似文献   

8.
Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.  相似文献   

9.
In the 1990s during wet seasons a new disease causing brown leaf spots on lettuce (Lactuca sativa) was found for the first time in many lettuce‐growing areas of Austria and Germany. The causal agent, a new pathogenic species called Septoria birgitae, may be responsible for total crop loss. To study how temperature, inoculum density and leaf wetness period influence disease incidence and severity of leaf spot on lettuce caused by S. birgitae, we carried out in vivo experiments in growth chambers and in the field. Additionally, we evaluated the relevance of infected plant debris acting as a primary inoculum source in soil for subsequent crops. S. birgitae produces spores over a wide temperature range between 5°C and 30°C, and can infect plants at temperatures between 10°C and 30°C, with an optimum between 20°C and 30°C. Spores of S. birgitae at a density of at least 103 conidia mL–1 are essential for disease outbreak on lettuce. Because leaf wetness is crucial for releasing conidia from pycnidia, we studied the impact of leaf wetness duration on disease development under various temperature conditions. For relevant leaf spot disease development on lettuce in vivo, a leaf wetness duration of at least 24 h and temperatures higher than 10°C were necessary. Leaf spot disease development in the field required several leaf wetness periods longer than 20 h at approximately 15°C at the beginning of crop cultivation. Incorporating S. birgitae infected plant debris in soil as a primary inoculum was not relevant for leaf spot disease outbreak in the next year. However, in cases of continuous cropping of lettuce on the same field and in the same season, Septoria‐infected lettuce debris may become more relevant.  相似文献   

10.
The maturation pattern of sexual reproduction in Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeaophyta) was examined in 2003 at Yunao Bay, Nanao Island, Shantou, China. Maturation began in mid-April (seawater temperature 19–21 C), reached the peak in mid-May (maturation rate ca. 70%, and seawater temperature 23.5–25 C) and finished in late-June (seawater temperature 27.5–30 C). The Hizikia plants continued to gain the length from the beginning of maturation season to reach a maximum mean length of 34.8 cm in mid-May, after which the mean length was reduced drastically due to the senescence and rupture of the larger plants in size. The major portion of the mature plants belonged to the larger plants between April and May, but to the smaller ones in June. It is suggested that the plant must achieve a critical size before reproductive maturation occurred. There was a positive relationship between the number of receptacles (NR), as well as the reproductive allocation (RA), and the plant size of Hizikia population, with the recorded maximum values of NR and RA being 1220 and 64.3% respectively, for a single plant.  相似文献   

11.
Abstract
  • 1 There is confusion in the literature concerning a possible reproductive diapause in the adult white pine weevil Pissodes strobi.
  • 2 We evaluated the effects of temperature, photoperiod, feeding substrate and mating status on the sexual maturation and oviposition of female white pine weevils.
  • 3 Less than 30% of female P. strobi became sexually mature and laid eggs without experiencing dormancy under a temperature regime of 2 °C for 4 weeks.
  • 4 Among the females that experienced a cold temperature treatment after emergence, 80% laid eggs after dormancy when exposed to a long‐day (LD 16 : 8 h) photoperiod and 17.6% laid eggs when exposed to a short‐day (LD 8 : 16 h) photoperiod.
  • 5 Significantly more eggs were laid by all the females (with and without a cold treatment) when subjected to a long‐day photoperiod compared with a short‐day photoperiod.
  • 6 A period of cold temperature followed by exposure to a long‐day photoperiod with warmer temperatures is required to break reproductive diapause and to obtain a good oviposition response in female P. strobi.
  • 7 This study reveals the existence of much intraspecific variation in the response of the white pine weevil to temperature and photoperiod with respect to the induction and termination of reproductive diapause.
  相似文献   

12.
Sargassum fulvellum is a brown alga recently introduced to the seaweed cultivation industry in Korea. There is current interest in the commercial scale of aquaculture of this species. For the artificial seeding and cultivation of this alga, growth and maturation were investigated from September 2002 to August 2003. Indoor culture experiments for maturation induction were also conducted at temperatures of 5, 10, 15, 20 and 25 C and irradiances of 20, 50, 80 and 100 μmol photons m−2 s−1 under 16:8 h (L:D) photoperiod. Within a given culture test range, higher temperature and irradiance levels favoured the maturation of receptacles in S. fulvellum. Using temperature and irradiance control for thalli, artificial seed production of this species could be done one month earlier than thalli matured in nature. Under natural condition, receptacle formation of the plants began in February, and the eggs were released from March to April. For mature thalli of 200 g wet wt., artificial seeding was complete enough for attachment on seed strings of 100 m. Mean production obtained from the artificial seeding technique in situ was 3.0 kg wet wt m−1 of culture rope during the cultivation period.  相似文献   

13.
Ascospores of both A‐group and B‐group Leptosphaeria maculans germinated at temperatures from 5–20°C on distilled water agar or detached oilseed rape leaves. After 2 h of incubation on water agar, some A‐group ascospores had germinated at 10–20°C and some B‐group ascospores had germinated at 5–20°C. The percentages of both A‐group and B‐group ascospores that had germinated after 24 h of incubation increased with increasing temperature from 5–20°C. The observed time (Vo50) which elapsed from inoculation until 50% of the spores had germinated was shorter for B‐group than for A‐group ascospores. Germ tube length increased with increasing temperature from 5–20°C for both ascospore groups. Germ tubes from B‐group ascospores were longer than germ tubes from A‐group ascospores at all temperatures tested, but the mean diameter of germ tubes from A‐group ascospores (1.8 μm) was greater than that of those from B‐group ascospores (1.2μm) at 15°C and 20°C. The average number of germ tubes produced from A‐group ascospores (3.8) was greater than that from B‐group ascospores (3.1) after 24 h of incubation at 20°C, on both water agar and leaf surfaces. Germ tubes originated predominantly from interstitial cells or terminal cells of A‐group or B‐group ascospores, respectively, on both water agar and leaf surfaces. Hyphae from A‐group ascospores grew tortuously with extensive branching, whilst those from B‐group ascospores were predominantly long and straight with little branching, whether the ascospores were produced from oilseed rape debris or from crosses between single ascospore isolates, and whether ascospores were germinating on water agar or leaf surfaces.  相似文献   

14.
The seasonal occurrence of Mycosphaerella buna in leaves and contiguous organs of Fagus crenata was studied in a Japanese beech forest, Ibaraki, Japan, in 1998 and 1999. Mycosphaerella buna was not isolated from newly developed leaves in May, but it was isolated from asymptomatic leaves after June. The frequency of its occurrence gradually increased until leaffall. In contrast, M. buna was not isolated from overwintered buds, leaf petioles, or contiguous current-year twigs. The spermogonia and pseudothecia were observed in dead leaves after leaffall. The mature pseudothecia were found on dead leaves from May to July. The ascospores produced in the pseudothecia were suggested to infect newly developed leaves.Contribution no. 173, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

15.
Fusarium graminearum is the predominant component of the Fusarium head blight complex of wheat. F. graminearum ascospores, which initiate head infection, mature in perithecia on crop residues and become airborne. The effects of temperature (T) and moisture on perithecium production and maturation and on ascospore production on maize stalk residues were determined. In the laboratory, perithecia were produced at temperatures between 5 and 30°C (the optimum was 21.7°C) but matured only at 20 and 25°C. Perithecia were produced when relative humidity (RH) was ≥75% but matured only when RH was ≥85%; perithecium production and maturation increased with RH. Equations describing perithecium production and maturation over time as a function of T and RH (R2 > 0.96) were developed. Maize stalks were also placed outdoors on three substrates: a grass lawn exposed to rain; a constantly wet, spongelike foam exposed to rain; and a grass lawn protected from rain. No perithecia were produced on stalks protected from rain. Perithecium production and maturation were significantly higher on the constantly wet foam than on the intermittently wet lawn (both exposed to rain). Ascospore numbers but not their dispersal patterns were also affected by the substrate.  相似文献   

16.
Cysts of the toxic dinoflagellate Alexandrium tamarense (Lebour) Balech 1992 from the lower St. Lawrence estuary were used in a test of the following hypotheses: (1) cyst germination is triggered by a change in temperature, and (2) germination rate varies throughout the year and is controlled by a circannual internal biological clock. Results show that cyst germination was not affected significantly by temperature of incubation over the range 1°–16° C, and light showed no significant stimulation of germination. This is supported by the lack of effect of cyst incubation conditions during evaluation of the seasonal changes in germination rate (two temperatures: 4° and 15° C, and two light conditions: darkness and 150 μmol photons·m?2·s?1). Thus, direct environmental control through short-term increases in temperature and exposure to light has no effect on the germination of the cysts tested. The rate of germination, observed monthly over a 16-month period, showed low germination (<20%) over most of the period tested, except for a maximum reaching more than 50% germination in August to October of the second year of the experiment. This pattern was observed for cysts both from monthly field collections and from laboratory-stored cysts kept under constant environmental conditions (4° C, in the dark). The peak in germination observed under constant environmental conditions (in the laboratory), the almost coincidental increase in cyst germination observed for the field-collected cysts, and the absence of effects of temperature and light during incubation could be explained either by a temperature-controlled cyst maturation period (the time-temperature hypothesis of Huber and Nipkow 1923) or by the presence of an internal biological clock. However, the large decline in the rate of germination 2 months after the maximum provides strong support for the biological clock hypothesis. The ca. 12-month maturation (dormancy) period observed for the laboratory-stored cysts is the longest reported for this species to our knowledge; this might be related to the low storage temperature (4° C), which is close to bottom temperatures generally encountered in this environment (0° to 6° C). Similar field and laboratory storage temperatures could explain the coincidental increase in germination rate in the fall of the second year if cyst maturation is controlled by temperature. A fraction of the laboratory-stored cysts did not follow a rhythmic pattern: A rather constant germination rate of about 20% was observed throughout the year. This continuous germination of likely mature cysts may supplement the local blooms of this toxic dinoflagellate, as these often occur earlier than peak germination observed in late summer. It seems that two cyst germination strategies are present in the St. Lawrence: continuous germination after cyst maturation, with temperature controlling the length of the maturation period, and germination controlled by a circannual internal rhythm.  相似文献   

17.
An isolate of P. herbarum from beet seed failed to discharge ascospores in darkness but did so when exposed to light either continuously or cyclically (12 h light/12 h dark). When colonies with mature asci were subjected to a regime of alternating light and darkness for 54 days at a constant temperature of 20°C, ascospores were discharged over the entire period. Maximum discharge occurred on the 23rd day; few spores were liberated towards the end of the period. Light-induced spore discharge occurred over a wide temperature range (10–30°C) with the optimum being approximately 14–23°C. When light of different wavelengths (300 nm-infrared) was tested, only near-ultraviolet (310–330 nm) radiation stimulated ascospore discharge. Vertical height of ascospore discharge was also determined. When ascospores were trapped above colonies over a range of heights (2–80 mm), most spores were caught at 2 mm; none was caught at heights above 30 mm. The number of spores trapped at 30 mm was only 1.3% of the capture at 2 mm.  相似文献   

18.
A 6-year study was carried out in an apple-growing region of North Italy by trapping airborne ascospores of Venturia inaequalis with a volumetric spore trap operated continuously during the ascospore season, with the aim of better defining the weather conditions that allow ascospores both to discharge and to disperse into the orchard air. A total of more than 60 ascospore trapping events occurred. Rain events were the only occurrences allowing ascospores to become airborne (a rain event is a period with measurable rainfall ≥0.2 mm/h – lasting one to several hours, uninterrupted or interrupted by a maximum of two dry hours); on the contrary, dew was always insufficient to allow ascospores to disperse into the air at a measurable rate, in the absence of rain. In some cases, rain events did not cause ascospore dispersal; this occurred when: (i) rain fell within 4–5 h after the beginning of a previous ascospore trapping; (ii) rain fell at night but the leaf litter dried rapidly; (iii) nightly rainfalls were followed by heavy dew deposition that persisted some hours after sunrise. Daytime rain events caused the instantaneous discharge and dispersal of mature ascospores so that they became airborne immediately; for night-time rainfall there was a delay, so that ascospores became airborne during the first 2 h after sunrise. This delay did not always occur, and consequently the ascospore trapping began in the dark, when: (i) the cumulative proportion of ascospores already trapped was greater than 80% of the total season's ascospores; (ii) more than one-third of the total season's ascospores was mature inside pseudothecia and ready to be discharged.  相似文献   

19.
Taphrina maculans Butler inciting the brown leaf spot disease of turmeric (Curcuma longa L.) produces cuboid ascogenous cells several layers in depth in the subcuticular interspaces of the epidermis. The ascogenous cells germinate to produce asci centrifugally maturing toward the periphery of the stroma, expelling octosporous microcolonies of asco-blastospores on the leaf surface inciting secondary infection in favorable environment. Occurrence of a rhythmic cycle of ascus development and ascospore discharge giving 2 peaks of ascospore discharge each day has been demonstrated in Taphrina maculans. The cycle is directly affected by atmospheric temperature, availability of free moisture on the leaf surface and sunlight. Free moisture on a leaf surface appropriately soaks the infection spots (ascogenous cells) and induces ascus elongation and ascospore discharge, when a suitable atmospheric temperature is reached. Sunlight may adversely affect the cycle by increasing the temperature and lowering humidity in the atmosphere.  相似文献   

20.
When Lactococcus lactis strains were exposed directly to the lethal temperature of 50 C for 30 ;min, 0.1–31% of the cells survived. However, when pre-exposed to 40 °C, prior to exposure at 50 °C, 4–61% of the cells survived. A plasmid carrying a unique heat shock gene from the thermophile Streptococcus thermophilus was cloned into L. ;lactis. When the transformed cells were cultivated at 30 °C the introduction of the plasmid had no obvious effect on the growth of L. ;lactis. However, when the temperature was abruptly shifted from 30 °C to 42 °C at mid-growth phase the growth decreased by 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号