共查询到20条相似文献,搜索用时 15 毫秒
1.
A.-K. Kuusk I. Happstadius L. Zhou L. A. Steventon H. Giese C. Dixelius 《Journal of Phytopathology》2002,150(6):349-356
Leptosphaeria maculans isolates have been assigned to one of two groups, A or B, on the basis of differences in their characteristics. Group A can further be divided into pathogenicity groups (PG) 2, 3 and 4 and group B into PG1. To determine if isolates belonging to the aggressive canker forming group A are present in Sweden, physiological and genetic characterisation of 120 isolates collected in the year 2000 were performed. Thirty‐seven isolates were classified as belonging to pathogenicity group PG3 and 63 isolates as PG4, based on a cotyledon assay. Twenty isolates did not cause any symptoms at all, and were classified as PG1. When comparing two geographical regions, Skåne and Östergötland, equal numbers of PG3 and PG4 isolates were found. By analysing the isolates by PCR, the collection was further classified into 100 group A isolates and 20 group B isolates. A corresponding classification of the isolates was observed when the ability to produce pigments in Czapek Dox broth was examined. The results showed a clear predominance of group A. This was also the case for the isolate collection from 2001. In a detailed survey of disease development in a L. maculans infected winter oilseed rape field in southern Sweden (Skåne), basal stem canker was not observed until early June Although the disease index value increased from 8.4 in June to 18.0 in July, few severely damaged plants were observed before harvest in mid‐July, despite infection with group A isolates. 相似文献
2.
BACKGROUND: Blackleg disease of Brassica napus, caused by the necrotrophic fungus Leptosphaeria maculans, causes severe yield losses in Australia, Europe and Canada. In Western Australia, it nearly destroyed the oilseed rape industry in 1972 when host genotypes and conducive environmental conditions favoured severe epidemics. The introduction of cultivars with polygenic resistance and the adoption of sound cultural practices two decades later helped to manage the disease. These were abandoned by many farmers in recent years in favour of the effective but ephemeral resistance conferred by the single dominant gene-based resistance derived from B. rapa ssp. sylvestris. Recently, several cultivars carrying this gene have collapsed widely within a period of 3 years after their commercial release. An environment conducive to the disease and the association of the pathogen with susceptible hosts in Western Australia for over 80 years together have led to the proliferation of L. maculans races, amounting to half of all races delineated to date from Europe, including the United Kingdom, Canada and Australia. SCOPE: This review demonstrates the problems that emerge when traditional cultural practices employed, along with cultivars containing polygenic resistance to a serious necrotrophic pathogen, are discarded in preference to the exclusive deployment of effective but ephemeral single dominant gene-based resistance to the disease across Southern Australia. CONCLUSIONS: Single dominant gene-based resistance currently available, on its own, will not confer durable resistance to blackleg disease in oilseed rape. Return to earlier management practices, including reliance upon polygenic resistance and induced resistance, may be the best currently available options to maintain production in regions across Southern Australia predisposed to severe epidemics. 相似文献
3.
Bohman S Staal J Thomma BP Wang M Dixelius C 《The Plant journal : for cell and molecular biology》2004,37(1):9-20
Out of 168 Arabidopsis accessions screened with isolates of Leptosphaeria maculans, one (An-1) showed clear disease symptoms. In order to identify additional components involved in containment of L. maculans in Arabidopsis, a screen for L. maculans-susceptible (lms) mutants was performed. Eleven lms mutants were isolated, which displayed differential susceptibility responses to L. maculans. lms1 was crossed with Columbia (Col-0) and Ws-0, and mapping data for both populations showed the highest linkage to a region on chromosome 2. Reduced levels of PR-1 and PDF1.2 expression were found in lms1 compared to wild-type plants 48 h after pathogen inoculation. In contrast, the lms1 mutant displayed upregulation of either marker gene upon chemical treatment, possibly as an effect of an altered ethylene (ET) response. To assess the contribution of different defence pathways, genotypes implicated in salicylic acid (SA) signalling plants expressing the bacterial salicylate hydroxylase (nahG) gene, non-expressor of PR1 (npr1)-1 and phytoalexin-deficient (pad4-1), jasmonic acid (JA) signalling (coronatine insensitive (coi)1-16, enhanced disease susceptibility (eds)8-1 and jasmonic acid resistant (jar)1-1) and ET signalling (eds4-1, ethylene insensitive (ein)2, ein3-1 and ethylene resistant (etr)1-1) were screened. All the genotypes screened were as resistant as wild-type plants, demonstrating the dispensability of the pathways in L. maculans resistance. When mutants implicated in cell death responses were assayed, responsive to antagonist 1 (ran1)-1 exhibited a weak susceptible phenotype, whereas accelerated cell death (acd)1-20 showed a rapid lesion development. Camalexin is only partially responsible for L. maculans containment in Arabidopsis, as pad3-1 and enhanced susceptibility to Alternaria (esa)1 clearly showed a susceptible response while wild-type levels of camalexin were present in An-1 and lms1. The data presented point to the existence of multiple defence mechanisms controlling the containment of L. maculans in Arabidopsis. 相似文献
4.
The Brassica napus-B. juncea recombinant lines MX and MXS carrying a B. juncea major gene (JLml) in the genetic background of a spring- or a winter type B. napus cultivar, respectively, were tested for their resistance level to Leptosphaeria maculans under controlled conditions. Inoculation with three A-and four B-group individual isolates and with different mixtures of isolates realised within or between these groups was performed on cotyledons, leaves and stems. Cotyledons and leaves of the two recombinant lines were more resistant to A-group isolates than those of B. napus cultivars, except for one isolate recovered from the MX line. The recombinant lines were susceptible at cotyledon stage and resistant on leaves to B-group isolates, as were B. napus cultivars. On stems, severe cortical damage was usually produced on B. napus cultivars by some A-group isolates, whereas B-group isolates induced pith blackening on all genotypes. Stems of the MX line and the resistant donor species (B. juncea cv. Picra) were more resistant than those of the susceptible B. napus (cv. Westar) to the individual A-group isolates. Cultivar Picra was the most susceptible genotype to pith infection caused by the B-group isolates. The consequence of the host pathogen differential interactions on the durability of the monogenic resistance to L. maculans introduced from B. juncea into B. napus is discussed. 相似文献
5.
Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers 总被引:7,自引:0,他引:7
J. Plieske D. Struss G. Röbbelen 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,97(5-6):929-936
Genes of the B genome of Brassica conditioning Phoma resistance at the epicotyle were transferred into Brassica napus by interspecific hybridization. The recombinant lines expressed high resistance similar to that of the donor parents. Unlike
the oligo- or poly-genically inherited resistance of B. napus known so far, the B-genome resistance genes of the recombinant lines behaved monogenically dominant. No significant differences
in the level of resistance or in the phenotype of the resistance mechanisms were observed among homozygous resistant plants
when the different B-genome origins investigated, i.e. B. nigra, B. juncea and B. carinata, were compared. Therefore it was assumed that the resistance genes of each B-genome species and the resistance mechanisms
of the species are identical. Temperature increased the expression of internal lesions caused by Phoma lingam. High summer temperatures in the greenhouse led to faster development of tissue damage at the epicotyle of plants, resulting
in significant deviations in segregation ratios, when fixed scores were used for disease classification. Independent of origin,
the three B-genome resistance genes were introgressed at the same location of the rapeseed genome. The arrangement and distances
of closely linked RFLP markers on linkage-groups were similar to those of the same markers on linkage group six of the rapeseed
map. It is concluded that the B-genome resistance genes were introgressed by homoeologous recombination after allosyndetical
pairing of B-genome chromosomes with the A- or C-genome chromosomes.
Received: 3 April 1998/Accepted: 22 April 1998 相似文献
6.
STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus 总被引:7,自引:0,他引:7
J. Plieske D. Struss 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,102(4):483-488
The RFLP and AFLP techniques are laborious and expensive and therefore of limited use for marker-assisted selection, demanding a high throughput of samples in a short time. But marker-assisted selection is most useful for traits which are hard to score on single plants and influenced by environmental factors. Four RFLP and three AFLP markers have been found to be linked to genes of the B-genome of Brassica mediating resistance against Phoma lingam in oilseed rape. One RFLP and one AFLP marker were converted into three PCR-based STS markers: one of dominant, as well as one of codominant inheritance separated in a standard agarose gel and a third one of codominant inheritance to be separated in a polyacrylamide gel on an automated sequencer. As expected, the STS markers mapped at the same position as the original RFLP and AFLP markers. The STS markers are efficient in marker-assisted backcross programs of the resistant B-genome/Brassica napus recombinant lines with most of the tested oilseed rape varieties and breeding lines. More than 90% of the tested oilseed rape varieties and breeding lines exhibited no resistance marker alleles. The mapping results obtained with the markers, as well as comparative sequencing of the marker alleles, indicate synteny and homology between the B-genome resistance gene donors and B. napus in the region of the resistance genes. The location of the resistance genes in the B-genome/B. napus recombinant lines is most likely on the A genome. Thus the transfer of the B-genome resistance genes into Brassica campestris is also possible. Received: 9 December 1999 / Accepted: 21 June 2000 相似文献
7.
Eckert M Maguire K Urban M Foster S Fitt B Lucas J Hammond-Kosack K 《FEMS microbiology letters》2005,253(1):67-74
Four filamentous ascomycetes, Leptosphaeria maculans, L. biglobosa, Oculimacula yallundae and O. acuformis, were transformed via Agrobacterium tumefaciens-mediated transformation with the genes encoding DsRed and GFP. Using vectors pCAMDsRed and pCAMBgfp, either germinated conidia of Leptosphaeria spp. and O. yallundae or physically fragmented cultures of Oculimacula spp. were transformed. In vitro, the expression of the two reporter proteins in mycelium of both Oculimacula and both Leptosphaeria species was sufficient to distinguish each species in co-inoculated cultures. In planta, transformants of L. maculans or L. biglobosa expressing DsRed or GFP could be observed together in leaves of Brassica napus. Either reporter protein could be used to view the colonization of leaf petioles by both Leptosphaeria spp. and growth in the xylem vessels could be clearly observed. With the generation of these transformants, further studies on interactions between pathogen species involved in disease complexes on various host species and between opposite mating types of the same species are now possible. 相似文献
8.
R. Delourme H. Brun M. Ermel M.O. Lucas P. Vallee C. Domin G. Walton Hua Li K. Sivasithamparam M.J. Barbetti 《The Annals of applied biology》2008,153(2):259-269
Blackleg, caused by Leptosphaeria maculans, is a major disease of oilseed rape (Brassica napus), worldwide, including Australia and France. The aims of these studies were first, to determine if higher levels of resistance to L. maculans could be generated in double haploid (DH) lines derived from spring‐type B. napus cv. Grouse, which has a good level of field resistance to blackleg; and second, to determine whether the resistance to blackleg disease of individual DH lines responds differentially to different L. maculans field populations within and between the two countries. DH lines were extracted from cv. Grouse and tested in field experiments carried out in both France and Australia against natural L. maculans populations. Extracting and screening DH lines were an effective means to select individual lines with greatly improved expression of resistance to blackleg crown canker disease in comparison with the original parental population. However, relative disease resistance rankings for DH lines were not always consistent between sites. The higher level of resistance in France was shown to be because of a high expression level of quantitative resistance in the French growing conditions. Big differences were observed for some DH lines between the 2004 and the 2005 field sites in Australia where the L. maculans populations differed by their virulence on single dominant gene‐based resistant lines derived from Brassica rapa ssp. sylvestris. This differential behaviour could not be clearly explained by the specific resistance genes until now identified in these DH lines. This investigation highlights the potential to derive DH lines with superior levels of resistance to L. maculans compared with parental populations. However, in locations with particularly high pathogen diversity, such as in southern Australia, multiyear and multisite evaluations should be performed to screen for the most efficient material in different situations. 相似文献
9.
A cell suspension culture assay to determine the phytotoxicity of the fungal toxins phomalide, a host-selective toxin produced by the fungus Phoma lingam (Tode ex Fr.) Desm., perfect stage Leptosphaeria maculans (Desm.) Ces. et de Not., and destruxin B, the major host-selective toxin produced by the fungus Alternaria brassicae (Berk.) Sacc., was carried out with three Brassica spp. It was established that phomalide was significantly less phytotoxic to Cutlass (Brassica juncea), the cultivar resistant to L. maculans, than to Westar (B. napus), the cultivar susceptible to L. maculans, at concentrations ≤2×10–5 M. Similar to phomalide, destruxin B, at concentrations ≤5×10–5 M, decreased the viability of cells of the cultivar resistant to A. brassicae (Ochre, Sinapis alba) less than the viability of cells of the susceptible cultivar (Westar, B. napus). Considering the high selectivity of phomalide and its direct correlation with plant disease resistance, phomalide may have great potential application in breeding programs screening/selecting for blackleg resistance in brassicas. Received: 23 November 1999 / Revision received: 11 April 2000 / Accepted: 8 May 2000 相似文献
10.
During a search for elicitors and phytotoxins produced by virulent isolates of the phytopathogenic fungus Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phomalingam (Tode ex Fr.) Desm.], the selective phytotoxin maculansin A was isolated and its structure determined by analysis of spectroscopic data and chemical degradation. Maculansin A, a unique derivative of mannitol containing the unusual chromophore 2-isocyano-3-methyl-2-butenoyl, was isolated from potato dextrose cultures of L. maculans virulent on canola (Brassica napus L. cv. Westar). Surprisingly, maculansin A was more toxic to resistant plants (B. juncea L. cv. Cutlass, brown mustard) than to susceptible plants (canola). Maculansin A, however, did not elicit the production of phytoalexins either in resistant or susceptible plants. In addition, other maculansin type structures and the metabolite 2,4-dihydroxy-3,6-dimethylbenzaldehyde were isolated and the latter was found to be a strong inhibitor of root growth of both brown mustard and canola. Considering that L. maculans seems to be expanding its host range to infect brown mustard as well, maculansins could assist in chemotaxonomic studies to group the diverse isolates. 相似文献
11.
Shubhi Avasthi Ajay Kumar Gautam 《Archives Of Phytopathology And Plant Protection》2013,46(12):1508-1511
Leaf spot disease of A. vera was observed in nurseries of Gwalior city afterthe post-rainy season. As the disease progressed, the tip of the leaf shrank, then dried and eventually broke. The causal agent was identified as Phoma betae A.B. Frank. This is the first report of leaf spot disease on Aloe vera caused by P. betae in India. 相似文献
12.
X. Zhang J. Halder R.P. White D.J. Hughes Z. Ye C. Wang R. Xu B. Gan B.D.L. Fitt 《The Annals of applied biology》2014,164(3):384-395
To estimate potential impact of climate change on wheat fusarium ear blight (FEB), simulated weather for the A1B climate change scenario was input into a model for estimating FEB in central China. In this article, a logistic weather‐based regression model for estimating incidence of wheat FEB in central China was developed, using up to 10 years (2001–2010) of disease, anthesis date and weather data available for 10 locations in Anhui and Hubei provinces. In the model, the weather variables were defined with respect to the anthesis date for each location in each year. The model suggested that incidence of FEB is related to number of days of rainfall in a 30‐day period after anthesis and that high temperatures before anthesis increase the incidence of disease. Validation was done to test whether this relationship was satisfied for another five locations in Anhui province with FEB data for 4–5 years but no nearby weather data, using simulated weather data obtained employing the regional climate modelling system PRECIS. How climate change may affect wheat anthesis date and FEB in central China was investigated for period 2020–2050 using wheat growth model Sirius and climate data simulated using PRECIS. The projection suggested that wheat anthesis dates will generally be earlier and FEB incidence will increase substantially for most locations. 相似文献
13.
J. S. WEST J. E. BIDDULPH B. D. L. FITT P. GLADDERS 《The Annals of applied biology》1999,135(2):535-546
In the UK, ascospores of Leptosphaeria maculans first infect leaves of oilseed rape in the autumn to cause phoma leaf spots, from which the fungus can grow to cause stem cankers in the spring. Yield losses due to early senescence and lodging result if the stem cankers become severe before harvest. The risk of severe stem canker epidemics needs to be forecast in the autumn when the pathogen is still in the leaves, since early infections cause the greatest yield losses and fungicides have limited curative activity. Currently, the most effective way to forecast severe stem canker is to monitor the onset of phoma leaf spotting in winter oilseed rape crops, although this does not allow much time in which to apply a fungicide. Early warnings of risks of severe stem canker epidemics could be provided at the beginning of the season through regional forecasts based on disease survey and weather data, with options for input of crop-specific information and for updating forecasts during the winter. The accuracy of such forecasts could be improved by including factors relating to the maturation of ascospores in pseudothecia, the release of ascospores and the occurrence of infection conditions, as they affect the onset, intensity and duration of the phoma leaf spotting phase. Accurate forecasting of severe stem canker epidemics can improve disease control and optimise fungicide use. 相似文献
14.
HELEN L. HAYDEN LEANNE M. WILSON ANTON J. COZIJNSEN BARBARA J. HOWLETT 《Molecular ecology resources》2004,4(3):480-481
Seven polymorphic microsatellite markers suitable for population genetic studies and genetic mapping were developed for Leptosphaeria maculans, a fungal pathogen of canola (Brassica napus). Polymorphism was evaluated using 14 isolates from diverse geographical locations. Each locus had either two or three alleles. Cross‐species amplification was observed for almost all loci in L. biglobosa ‘brassicae’ and L. maculans ‘lepidii’. 相似文献
15.
Global warming will influence the growth and development of both crops and pathogens. The aims of this study were to investigate potential effects of future warming on oilseed rape growth and the epidemiology of the three economically important pathogens Verticillium longisporum, Sclerotinia sclerotiorum, and Leptosphaeria maculans (anamorph: Phoma lingam). We utilized climate chambers and a soil warming facility, where treatments represented regional warming scenarios for Lower Saxony, Germany, by 2050 and 2100, and compared results of both approaches on a thermal time scale by calculating degree‐days (dd) from day of sowing, December 1st and March 1st until sampling, the latter correlating best with disease progress. Regression analysis showed that plant growth and growth stages in spring responded almost linearly to increasing thermal time until 1000–1500 dd. Colonization of plant tissue by V. longisporum showed an exponential increase when exceeding 1300–1500 dd and reaching plant growth stage BBCH 74/75 (pod development). V. longisporum colonization of plants may be advanced, potentially leading to higher inoculum densities after harvest and increased economic importance of this pathogen under future warming. Sclerotia germination of S. sclerotiorum reached its maximum at 600–900 dd. Advance of these critical degree‐days may lead to earlier apothecia production, potentially advancing the infection window, whereas the future importance of S. sclerotiorum may remain constant. Severity of phoma crown canker increased linearly with increasing thermal time, but showed also large variation in response to the warming scenarios, suggesting that factors such as canopy microclimate in fall or leaf shedding over winter may play a bigger role for L. maculans infection and disease severity than higher soil temperatures. Thermal time was a suitable tool to combine and integrate data on biological responses to soil and air temperature increases from climate chamber and field experiments. 相似文献
16.
Inés Ibáñez Elise S. Gornish Lauren Buckley Diane M. Debinski Jessica Hellmann Brian Helmuth Janneke HilleRisLambers Andrew M. Latimer Abraham J. Miller‐Rushing Maria Uriarte 《Ecology and evolution》2013,3(1):170-181
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way. 相似文献
17.
Janine Y. Tan David Wainhouse Keith R. Day Geoffrey Morgan 《Agricultural and Forest Entomology》2010,12(4):427-434
- 1 Adult pine weevils Hylobius abietis emerge from conifer root‐stumps, on which larvae develop, over an extended period during summer and autumn. Newly‐emerged weevils were tested for their ability to fly and assessed for wing muscle and reproductive development. In addition, the effect of summer–autumn maturation feeding on reproductive development was assessed in field bioassays.
- 2 There was considerable variation in development between newly‐emerged weevils that was related to the timing of emergence. The first weevils, emerging in early July, weighed less than later‐emerging ones, had undeveloped flight muscles and did not fly. Over the emergence period, wing muscle size and flight ability increased markedly, with 50–60% flying by mid‐September. Differences between emerging adults are likely to have been affected by temporal changes in the quality of the bark on which the larvae feed.
- 3 Reproductive development lagged behind that of wing muscles but, in early August, there was a rapid increase in the proportion of weevils with immature eggs and a corresponding increase in oocyte size. However, although wing muscles were fully formed in later‐emerging weevils, immature eggs were only approximately 10% of the volume of mature eggs.
- 4 In field bioassays of summer–autumn maturation feeding, eggs continued to develop and some weevils laid mature eggs. Feeding and development during the pre‐overwinter period is likely to influence winter survival and also dispersal and reproduction in the following spring.
- 5 The potential effects of climate change on the weevil life cycle are briefly discussed. Weevils are likely to benefit from the higher temperatures and later autumns predicted under climate change, resulting in an increase in damage to transplants.
18.
Jan Ohlberger ?ystein Langangen Eric Edeline Esben Moland Olsen Ian J. Winfield Janice M. Fletcher J. Ben James Nils Christian Stenseth Leif Asbj?rn V?llestad 《Proceedings. Biological sciences / The Royal Society》2011,278(1702):35-41
Anthropogenic factors, including climate warming, are increasing the incidence and prevalence of infectious diseases worldwide. Infectious diseases caused by pathogenic parasites can have severe impacts on host survival, thereby altering the selection regime and inducing evolutionary responses in their hosts. Knowledge about such evolutionary consequences in natural populations is critical to mitigate potential ecological and economic effects. However, studies on pathogen-induced trait changes are scarce and the pace of evolutionary change is largely unknown, particularly in vertebrates. Here, we use a time series from long-term monitoring of perch to estimate temporal trends in the maturation schedule before and after a severe pathogen outbreak. We show that the disease induced a phenotypic change from a previously increasing to a decreasing size at maturation, the most important life-history transition in animals. Evolutionary rates imposed by the pathogen were high and comparable to those reported for populations exposed to intense human harvesting. Pathogens thus represent highly potent drivers of adaptive phenotypic evolution in vertebrates. 相似文献
19.
Sarah P. Saunders Leslie Ries Karen S. Oberhauser Elise F. Zipkin 《Global Ecology and Biogeography》2016,25(8):1000-1012
20.
Noah D. Charney Flurin Babst Benjamin Poulter Sydne Record Valerie M. Trouet David Frank Brian J. Enquist Margaret E. K. Evans 《Ecology letters》2016,19(9):1119-1128
Predicting long‐term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree‐ring observations spanning North America and a space‐for‐time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water‐use efficiency (WUE) due to CO2‐fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high‐latitude forests, leaving no evidence for continued ‘boreal greening’; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. 相似文献