首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Saccharomyces cerevisiae undergoes cell fusion during sexual conjugation to form diploid cells. The haploids participating in this process signal each other through secreted peptide-mating factors (alpha-factor and a-factor) that are recognized by G-protein-coupled receptors. The receptor (Ste2p) recognizing the tridecapeptide alpha-factor is used as a model system in our laboratory to understand various aspects of peptide-receptor interactions and receptor structure. Using chemical procedures we have synthesized peptides corresponding to the seven transmembrane domains of Ste2p and studied their structures in membrane mimetic environments. Extension of these studies requires preparation of longer fragments of Ste2p. This article discusses strategies used in our laboratory to prepare peptides containing multiple domains of Ste2p. Data are presented on the use of chemical synthesis, biosynthesis, and native chemical ligation. Using biosynthetic approaches fusion proteins have been expressed that contain single receptor domains, two transmembrane domains connected by the contiguous loop, and the tail connected to the seventh transmembrane domain. Tens of milligrams of fusion protein were obtained per liter, and multimilligram quantities of the isotopically labeled target peptides were isolated using such biosynthetic approaches. Initial circular dichroism results on a chemically synthesized 64-residue peptide containing a portion of the cytosolic tail and the complete seventh transmembrane domain showed that the tail portion and the hydrophobic core of this peptide maintained individual conformational preferences. Moreover, this peptide could be studied at near millimolar concentrations in the presence of micelles and did not aggregate under these conditions. Thus, these constructs can be investigated using high-resolution nuclear magnetic resonance techniques, and the cytosolic tail of Ste2p can be used as a hydrophilic template to improve solubility of transmembrane peptides for structural analysis.  相似文献   

2.
The alpha-factor receptor(Ste2p) is required for the sexual conjugation of the yeast Saccharomyces cerevisiae. Ste2p belongs to the G protein-coupled receptor (GPCR) family sharing a common heptahelical transmembrane structure. Biological synthesis of regions of Ste2p fused to a leader protein in Escherichia coli yielded milligram quantities of polypeptides that corresponded to one or two transmembrane domains. Fusion proteins were characterized by polyacrylamide gel electrophoresis, high performance liquid chromatography, and mass spectrometry. CD studies on the fusion proteins in trifluoroethanol:water mixtures indicated the existence of alpha-helical structures in the single- and the double-transmembrane domains. NMR experiments were performed in CDCl(3):CD(3)OH:H(2)O (4:4:1) on the (15)N-labeled single-transmembrane peptide showing a clear dispersion of the nitrogen-amide proton correlation cross peaks indicative of a high-purity, uniformly labeled molecule. The results indicate that single- and double-transmembrane domains of a GPCR can be produced by biosynthetic methods in quantities and purity sufficient for biophysical studies.  相似文献   

3.
Xie H  Ding FX  Schreiber D  Eng G  Liu SF  Arshava B  Arevalo E  Becker JM  Naider F 《Biochemistry》2000,39(50):15462-15474
The Ste2p receptor for alpha-factor, a tridecapeptide mating pheromone of the yeast Saccharomyces cerevisiae, belongs to the G protein-coupled family of receptors. In this paper we report on the synthesis of peptides corresponding to five of the seven transmembrane domains (M1-M5) and two homologues of the sixth transmembrane domain corresponding to the wild-type sequence and a mutant sequence found in a constitutively active receptor. The secondary structures of all new transmembrane peptides and previously synthesized peptides corresponding to domains 6 and 7 were assessed using a detailed CD analysis in trifluoroethanol, trifluoroethanol-water mixtures, sodium dodecyl sulfate micelles, and dimyristoyl phosphatidyl choline bilayers. Tryptophan fluorescence quenching experiments were used to assess the penetration of the membrane peptides into lipid bilayers. All peptides were predominantly (40-80%) helical in trifluoroethanol and most trifluoroethanol-water mixtures. In contrast, two of the peptides M3-35 (KKKNIIQVLLVASIETSLVFQIKVIFTGDNFKKKG) and M6-31 (KQFDSFHILLINleSAQSLLVPSIIFILAYSLK) formed stable beta-sheet structures in both sodium dodecyl sulfate micelles and DMPC bilayers. Polyacrylamide gel electrophoresis showed that these two peptides formed high molecular aggregates in the presence of SDS whereas all other peptides moved as monomeric species. The peptide (KKKFDSFHILLIMSAQSLLVLSIIFILAYSLKKKS) corresponding to the sequence in the constitutive mutant was predominantly helical under a variety of conditions, whereas the homologous wild-type sequence (KKKFDSFHILLIMSAQSLLVPSIIFILAYSLKKKS) retained a tendency to form beta-structures. These results demonstrate a connection between a conformational shift in secondary structure, as detected by biophysical techniques, and receptor function. The aggregation of particular transmembrane domains may also reflect a tendency for intermolecular interactions that occur in the membrane environment facilitating formation of receptor dimers or multimers.  相似文献   

4.
Biosynthesis of peptides in heterologous systems is often a prerequisite to biophysical analyses. Large amounts of peptides, in particular portions of membrane proteins, are needed to optimize conditions for secondary and tertiary structure analysis. Chemical synthesis of these peptides is limited by their high hydrophobicity and also due to the need to incorporate isotopic labels for high resolution NMR analysis. In this protocol, we describe a method for the heterologous expression and purification of unlabeled and isotopically labeled peptide fragments of Ste2p, an integral membrane G protein‐coupled receptor. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were used as a model system to study ligand-receptor interaction. Cys-scanning mutagenesis on each residue of EL1, the first extracellular loop of Ste2p, was used to generate a library of 36 mutants with a single Cys residue substitution. Mutation of most residues of EL1 had only negligible effects on ligand affinity and biological activity of the mutant receptors. However, five mutants were identified that were either partially (L102C and T114C) or severely (N105C, S108C, and Y111C) compromised in signaling but retained binding affinities similar to those of wild-type receptor. Three-dimensional modeling, secondary structure predictions, and subsequent circular dichroism studies on a synthetic peptide with amino acid sequence corresponding to EL1 suggested the presence of a helix corresponding to EL1 residues 106 to 114 followed by two short beta-strands (residues 126 to 135). The distinctive periodicity of the five residues with a signal-deficient phenotype combined with biophysical studies suggested a functional involvement in receptor activation of a face on a 3(10) helix in this region of EL1. These studies indicate that EL1 plays an important role in the conformational switch that activates the Ste2p receptor to initiate the mating pheromone signal transduction pathway.  相似文献   

6.
G-protein coupled receptors (GPCRs) are a class of integral membrane receptor proteins that are characterized by a signature seven-transmembrane (7-TM) configuration. The alpha-factor receptor (Ste2p) from Saccharomyces cerevisiae is a GPCR that, upon binding of a peptide ligand, transduces a signal to initiate a cascade of events leading to the mating of haploid yeast cells. This study summarizes the application of affinity purification and of matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) experiments using biotinylated photoactivatable alpha-factor analogs. Affinity purification and enrichment of biotinylated peptides by monomeric avidin beads resulted in mass spectrometric detection of specific signals corresponding to cross-linked fragments of Ste2p. Data obtained from cyanogen bromide (CNBr) fragments of receptor cross-linked to an alpha-factor analog with the photoaffinity group p-benzoyl-l-phenylalanine on position 1 were in agreement with the previous results reported by our laboratory suggesting the cross-linking between position 1 of alpha-factor and a region of Ste2p covering residues 251-294.  相似文献   

7.
Transmembrane domains (TMDs) of G-protein coupled receptors (GPCRs) have very low water solubility and often aggregate during purification and biophysical investigations. To circumvent this problem many laboratories add oligolysines to the N- and C-termini of peptides that correspond to a TMD. To systematically evaluate the effect of the oligolysines on the biophysical properties of a TMD we synthesized 21 peptides corresponding to either the second (TPIFIINQVSLFLIILHSALYFKY) or sixth (SFHILLIMSSQSLLVPSIIFILAYSLK) TMD of Ste2p, a GPCR from Saccharomyces cerevisiae. Added to the termini of these peptides were either Lys(n) (n = 1,2,3) or the corresponding native loop residues. The biophysical properties of the peptides were investigated by circular dichroism (CD) spectroscopy in trifluoroethanol-water mixtures, sodium dodecyl sulfate (SDS) micelles and dimyristoylphosphocholine (DMPC)-dimyristoylphosphoglycerol (DMPG) vesicles, and by attenuated total reflection Fourier transform infrared (ATR-FTIR) in DMPC/DMPG multilayers. The results show that the conformation assumed depends on the number of lysine residues and the sequence of the TMD. Identical peptides with native or an equal number of lysine residues exhibited different biophysical properties and structural tendencies.  相似文献   

8.
Ding FX  Xie H  Arshava B  Becker JM  Naider F 《Biochemistry》2001,40(30):8945-8954
The structures of seven synthetic transmembrane domains (TMDs) of the alpha-factor receptor (Ste2p) from Saccharomyces cerevisiae were studied in phospholipid multilayers by transmission Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies. Peptide conformation assumed in multilayers depended on the method of sample preparation. Amide proton H/D exchange experiments showed that 60-80% of the NH bonds in these TMDs did not exchange with bulk water in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilayers. FTIR results showed that peptides corresponding to TMDs one, two, and seven were mostly alpha-helical in DMPC multilayers. Peptides corresponding to TMDs three and six assumed predominantly beta-sheet structures, whereas those corresponding to TMDs four and five were a mixture of alpha-helices and beta-sheets. ATR-FTIR showed that in DMPC the alpha-helices of TMDs two and five oriented with tilt angles of 34 degrees and 32 degrees, respectively, with respect to the multilayer normal. Similar results were obtained for six of the transmembrane domains in DMPC/DMPG (4:1) multilayers. In a mixture [POPC/POPE/POPS/PI/ergosterol (30:20:5:20:25)] which mimicked the lipid composition of the S. cerevisiae cell membrane, the percentage of alpha-helical structures found for TMDs one and five increased compared to those in DMPC and DMPC/DMPG (4:1) multilayers, and TMD six exhibited a mixture of beta-sheet ( approximately 60%) and alpha-helical ( approximately 40%) structure. These experiments provide biophysical evidence that peptides representing the seven transmembrane domains in Ste2p assume different structures and tilt angles within a membrane multilayer.  相似文献   

9.
We attached peptides corresponding to the seventh transmembrane domain (TMD7) of the alpha-mating factor receptor (Ste2p) of Saccharomyces cerevisiae to a hydrophilic, 40-residue fragment of the carboxyl terminus of this G protein-coupled receptor. Peptides corresponding to (a) the 40-residue portion of the carboxyl tail (T-40), (b) the tail plus a part of TMD7 (M7-12-T40), and (c) to the tail plus the full TMD7 (M7-24-T40) were chemically synthesized and purified. The molecular mass and primary sequence of these peptides were confirmed by mass spectrometry and tandem mass spectrometry procedures. Circular dichroism (CD) revealed that T-40 was disordered in phosphate buffer and in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-racemic-(1-glycerol)] bilayers. In contrast, M7-12-T40 and M7-24-T40 peptides were partially helical in the presence of vesicles, and difference CD spectroscopy showed that the transmembrane regions of these peptides were 42 and 94% helical, respectively. CD analysis also demonstrated that M7-24-T40 retained its secondary structure in the presence of 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-racemic-(1-glycerol)] micelles at 0.5 mm concentration. Thus, the tail and the transmembrane domain of the multidomain 64-amino acid residue peptide manifest individual conformational preferences. Measurement of tryptophan fluorescence indicated that the transmembrane domain integrated into bilayers in a manner similar to that expected for this region in the native state of the receptor. This study demonstrated that the tail of Ste2p can be used as a hydrophilic template to study transmembrane domain structure using techniques such as CD and NMR spectroscopy.  相似文献   

10.
The transmission of the mating signal of the budding yeast Saccharomyces cerevisiae requires Ste20p, a member of the serine/threonine protein kinases of the Ste20p/PAK family, to link the Gbeta subunit of the heterotrimeric G protein to the mitogen-activated protein kinase cascades. The binding site of Ste20p to the Gbeta subunit was mapped to a consensus sequence of SSLphiPLI/VXphiphibeta (X for any residue; phi for A, I, L, S or T; beta for basic residues), which was shown to be a novel Gbeta binding (GBB) motif present only in the noncatalytic C-terminal domains of the Ste20p/PAK family of protein kinases (Leeuw, T., Wu, C., Schrag, J. D., Whiteway, M., Thomas, D. Y., and Leberer, E. (1998) Nature 391, 191-195; Leberer, E., Dignard, D., Thomas, D. Y., and Leeuw, T. (2000) Biol. Chem. 381, 427-431). Here, we report the results of an NMR study on two GBB motif peptides and the entire C-terminal domain derived from Ste20p. The NMR data show that the two peptide fragments are not uniquely structured in aqueous solution, but in the presence of 40% trifluoroethanol, the longer 37-residue peptide exhibited two well defined, but flexibly linked helical structure elements. Heteronuclear NMR data indicate that the fully functional 86-residue C-terminal domain of Ste20p is again unfolded in aqueous solution but has helical secondary structure preferences similar to those of the two peptide fragments. The NMR results on the two GBB peptides and the entire GBB domain all indicate that the two important binding residues, Ser(879) and Ser(880), are located at the junction between two helical segments. These experimental observations with the prototype GBB domain of a novel family of Gbeta-controlled effectors may have important implications in understanding the molecular mechanisms of the signal transduction from the heterotrimeric G protein to the mitogen-activated protein kinase cascade.  相似文献   

11.
Naider F  Becker JM 《Peptides》2004,25(9):1441-1463
Mating in Saccharomyces cerevisiae is initiated by the secretion of diffusible peptide pheromones that are recognized by G protein-coupled receptors (GPCR). This review summarizes the use of the alpha-factor (WHWLQLKPGQPMY)--GPCR (Ste2p) interaction as a paradigm to understand the recognition between medium-sized peptide hormones and their cognate receptors. Studies over the past 15 years have indicated that the alpha-factor is bent around the center of the pheromone and that residues near the amine terminus play a central role in triggering signal transduction. The bend in the center appears not to be rigid and this flexibility is likely necessary for conformational changes that occur as the receptor switches from the inactive to active state. The results of synthetic, biological, biochemical, molecular biological, and biophysical analyses have led to a preliminary model for the structure of the peptide bound to its receptor. Antagonists for Ste2p have changes near the N-terminus of alpha-factor, and mutated forms of Ste2p were discovered that appear to favor binding of these antagonists relative to agonists. Many features of this yeast recognition system are relevant to and have counterparts in mammalian cells.  相似文献   

12.
The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.  相似文献   

13.
Biophysical and structural characterization of G protein-coupled receptors (GPCRs) has been limited due to difficulties in expression, purification, and vitro stability of the full-length receptors. "Divide and conquer" approaches aimed at the NMR characterization of peptides corresponding to specific regions of the receptor have yielded insights into the structure and dynamics of GPCR activation and signaling. Though significant progress has been made in the generation of peptides that are composed of GPCR transmembrane domains, current methods utilize fusion protein strategies that require chemical cleavage and peptide separation via chromatographic means. We have developed an expression and purification system based on fusion to ketosteroid isomerase, thrombin cleavage, and tandem affinity chromatography that enables the solubilization, cleavage, and characterization in a single detergent system relevant for biophysical and structural characterization. We have applied this expression and purification system to the production and characterization of peptides of the adenosine receptor family of GPCRs in Escherichia coli. Herein, we demonstrate using a model peptide that includes extracellular loop 3, transmembrane domain 7, and a portion of the carboxy-terminus of the adenosine A(2)a receptor that the peptide is sufficiently pure for biophysical characterization, where it adopts α-helical structure. Furthermore, we demonstrate the utility of this system by optimizing the construct for thrombin processing and apply the system to peptides with more complex structures.  相似文献   

14.
Arshava B  Taran I  Xie H  Becker JM  Naider F 《Biopolymers》2002,64(3):161-176
The NMR properties of seven peptides representing the transmembrane domains of the alpha-factor receptor from Saccharomyces cerevisiae were examined in trifluoroethanol/water (4:1) at 10 to 55 degrees C. The parameters extracted indicated all peptides were helical in this membrane mimetic solvent. Using chemical shift indices as the criterion, helicity varied from 64 to 83%. The helical residues in the peptides corresponded to the region predicted to cross the hydrocarbon interior of the bilayer. A study of a truncated 25-residue peptide corresponding to domain 2 gave evidence that the helix extended all the way to the N-terminus of this peptide, indicating that sequence and not chain end effects are very important in helix termination for our model peptides. Both nuclear Overhauser effect spectroscopy (NOESY) connectivities and chemical shift indices revealed significant perturbations around prolyl residues in the helices formed by transmembrane domains 6 and 7. Molecular models of the transmembrane domains indicate that helices for domains 6 and 7 are severely kinked at these prolyl residues. The helix perturbation around proline 258 in transmembrane domain 6 correlates with mutations that cause phenotypic changes in this receptor.  相似文献   

15.
16.
The structure and interactions of the proline-rich domain of ASPP2   总被引:2,自引:0,他引:2  
ASPP2 is a pro-apoptotic protein that stimulates the p53-mediated apoptotic response. The C terminus of ASPP2 contains ankyrin (Ank) repeats and a SH3 domain, which mediate its interactions with numerous partner proteins such as p53, NFkappaB, and Bcl-2. It also contains a proline-rich domain (ASPP2 Pro), whose structure and function are unclear. Here we used biophysical and biochemical methods to study the structure and the interactions of ASPP2 Pro, to gain insight into its biological role. We show, using biophysical and computational methods, that the ASPP2 Pro domain is natively unfolded. We found that the ASPP2 Pro domain interacts with the ASPP2 Ank-SH3 domains, and mapped the interaction sites in both domains. Using a combination of peptide array screening, biophysical and biochemical techniques, we found that ASPP2 Ank-SH3, but not ASPP2 Pro, mediates interactions of ASPP2 with peptides derived from its partner proteins. ASPP2 Pro-Ank-SH3 bound a peptide derived from its partner protein NFkappaB weaker than ASPP2 Ank-SH3 bound this peptide. This suggested that the presence of the proline-rich domain inhibited the interactions mediated by the Ank-SH3 domains. Furthermore, a peptide from ASPP2 Pro competed with a peptide derived from NFkappaB on binding to ASPP2 Ank-SH3. Based on our results, we propose a model in which the interaction between the ASPP2 domains regulates the intermolecular interactions of ASPP2 with its partner proteins.  相似文献   

17.
Mating in Saccharomyces cerevisiae is induced by the interaction of alpha-factor (W1H2W3L4Q5L6K7P8G9Q10P11M12Y13) with its cognate G protein-coupled receptor (Ste2p). Fifteen fluorescently labeled analogs of alpha-factor in which the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group was placed at the alphaN-terminus and in side-chains at positions 1, 3, 4, 6, 7, 12 and 13 were synthesized and assayed for biological activity and receptor affinity. Eleven of the analogs retained 6-60% of the biological activity of the alpha-factor, as judged using a growth arrest assay. The binding affinities depended on the position of NBD attachment in the peptide and the distance of the tag from the backbone. Derivatization of the positions 3 and 7 side-chains with the NBD group resulted in analogs with affinities of 17-35% compared with that of alpha-factor. None of the other NBD-containing agonists had sufficient receptor affinity or strong enough emission for fluorescence analysis. The position 3 and 7 analogs were investigated using fluorescence spectroscopy and collisional quenching by KI in the presence of Ste2p in yeast membranes. The results showed that the lambda max of NBD in the position 7 side-chain shifted markedly to the blue (510 nm) when separated by 4 or 6 bonds from the peptide backbone and that this probe was shielded from quenching by KI. In contrast, separation by 3, 5, 10 or more bonds resulted in lambda max ( approximately 540 nm) and collisional quenching constants consistent with increasing degrees of exposure. The NBD group in the position 3 side-chain was also found to be blue shifted (lambda max=520 nm) and shielded from solvent. These results indicate that the position 7 side-chain is likely interacting with a pocket formed by extracellular domains of Ste2p, whereas the side-chain of Trp3 is in a hydrophobic pocket possibly within the transmembrane region of the receptor.  相似文献   

18.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

19.
The extracellular domains of the thromboxane A2 receptor (TP receptor) were found to be involved in the specific ligand recognition. Determination of the three-dimensional (3D) structure of the extracellular loops would help to explain the mechanism of the ligand binding to its receptor with regard to the tertiary structure. Based on our previous studies on the extracellular loop of the human TP receptor, the synthetic loop peptides, whose termini are constrained to 10 to 14-A separations, are more likely to mimic the native structure of the extracellular loops. In this study, a peptide with the sequence of the third extracellular loop (eLP3, residues 271-289) of the TP receptor was synthesized, and its termini were constrained by the formation of a disulfide bond between the additional homocysteines located at both ends. Fluorescence spectroscopic studies showed that the fluorescence intensity of this constrained loop peptide could be increased by the addition of SQ29,548, a TP receptor antagonist, which indicated the interaction between the peptide and the ligand. The structure of this peptide was then studied by two-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy. 1H NMR assignments of the peptide were obtained and structure constraints were derived from nuclear Overhauser effects and J-coupling constants. The solution structure of the peptide was then calculated based on these constraints. The overall structure shows a beta turn from residues 278 to 281. It also shows a distance of 9.45A between the ends of the N and C termini of the peptide, which agrees with the distance between the two residues at the ends of the transmembrane helices connecting the eLP3 on the TP receptor working model generated using molecular modeling, based on the crystal structure of bovine rhodopsin. These results provide valuable information for the characterization of the complete 3D structure of the extracellular domains of the human TP receptor.  相似文献   

20.
The chain length dependence of helix formation of transmembrane peptides in lipids was investigated using fragments corresponding to the second transmembrane domain of the alpha-factor receptor from Saccharomyces cerevisiae. Seven peptides with chain lengths of 10 (M2-10; FKYLLSNYSS), 14 (M2-14), 18 (M2-18), 22 (M2-22), 26 (M2-26), 30 (M2-30) and 35 (M2-35; RSRKTPIFIINQVSLFLIILHSALYFKYLLSNYSS) residues, respectively, were synthesized. CD spectra revealed that M2-10 was disordered, and all of the other peptides assumed partially alpha-helical secondary structures in 99% trifluoroethanol (TFE)/H(2)O. In 50% TFE/H(2)O, M2-30 assumed a beta-like structure. The other six peptides exhibited the same CD patterns as those found in 99% TFE/H(2)O. In 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1 ratio) vesicles, M2-22, M2-26, and M2-35 formed alpha-helical structures, whereas the other peptides formed beta-like structures. Fourier transform infrared spectroscopy in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1) multilayers showed that M2-10, M2-14, M2-18, and M2-30 assumed beta-structures in this environment. Another homologous 30-residue peptide (M2-30B), missing residues SNYSS from the N terminus and extending to RSRKT on the C terminus, was helical in lipid bilayers, suggesting that residues at the termini of transmembrane domains influence their biophysical properties. Attenuated total reflection Fourier transform infrared spectroscopy revealed that M2-22, M2-26, M2-30B, and M2-35 were alpha-helical and oriented at angles of 12 degrees, 13 degrees, 36 degrees, and 34 degrees, respectively, with respect to the multilayer normal. This study showed that chain length must be taken into consideration when using peptides representing single transmembrane domains as surrogates for regions of an intact receptor. Furthermore, this work indicates that the tilt angle and conformation of transmembrane portions of G protein-coupled receptors may be estimated by detailed spectroscopic measurements of single transmembrane peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号