首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effects of three pure compounds isolated from wood garlic, 2,4,5-trithiahexane (I), 2,4,5,7-tetrathiaoctane (II), and 2,4,5,7-tetrathiaoctane 2,2-dioxide (III), on rabbit platelet aggregation induced by collagen, arachidonic acid, U46619, ADP (adenosine 5'-diphosphate), PAF (platelet aggregating factor), and thrombin were studied in vitro. The anti-aggregating activity of 2,4,5,7-tetrathiaoctane 4,4-dioxide (IV) was also measured with collagen and arachidonic acid. I, II, III, and IV inhibited the platelet aggregation induced by all tested agonists. I, II, and III exhibited a stronger inhibitory effect against the thrombin-induced aggregation of GFP (gel-filtered platelets) than against the aggregation induced by the other agonists. Notably, the IC50 value for III was 4 microM, which is approximately 2.5 times stronger than MATS (methyl allyl trisulfide), a major anti-platelet compound isolated from garlic. In inhibiting collagen-induced aggregation, II was as potent as MATS and aspirin, with a marked disaggregation effect on the secondary aggregation by arachidonic acid, at the rate of 47.05%/min at a concentration of 10(-4) M. I, II, and III also suppressed U46619-induced aggregation. These results suggest that sulfur-containing compounds in wood garlic not only inhibit arachidonic acid metabolism but also suppress aggregation in association with the function of the platelet plasma membrane.  相似文献   

2.
epsilon-Aminocaproic acid (EACA) is a synthetic low molecular drug with antifibrinolytic activity. However, treatment with this drug can be incidentally associated with an increased thrombotic tendency. The aim of the present work was to test synthetic EACA derivatives for their antiplatelet activities. We investigated the effect of three EACA derivatives with antifibrinolytic activity: I. epsilon-aminocaproyl-L-leucine hydrochloride (HClH-EACA-L-Leu-OH), II. epsilon-aminocaproyl-L-(S-benzyl)-cysteine hydrochloride (HClH-EACA-L-Cys(S-Bzl)-OH) and III. epsilon-aminocaproyl-L-norleucine (H-EACA-L-Nle-OH) on platelet responses (aggregation and adhesion) and on their integrity. It was found that: 1. as judged by LDH release test, none of the tested compounds, up to 20 mM, was toxic to platelets, 2. in comparison with EACA, all the synthetic derivatives inhibited much stronger the ADP- and collagen-induced aggregation of platelets suspended in plasma (platelet rich plasma) and aggregation of these cells in whole blood, 3. EACA and its derivatives exerted a similar inhibitory effect on the thrombin-induced adhesion of platelets to fibrinogen-coated surfaces. Since platelet activation and blood coagulation are tightly associated processes, the antiplatelet properties of EACA derivatives are expected to indicate reduced thrombotic properties of these derivatives compared to EACA.  相似文献   

3.
A polysaccharide YCP was prepared from a marine filamentous fungus Keissleriella sp. YS4108, which exhibited as a molecular weight (Mw) of 2.4x10(3) kDa and its three sulfated derivatives (YCP-SL, YCP-SM and YCP-SH) were synthesized, the degree of substitution (DS) of which were determined to be 0.13, 0.99 and 1.3, with the average molecular weight 0.64x10(3), 0.57x10(3) and 0.45x10(3) kDa, respectively. Anticoagulant activity and antiplatelet aggregation activity of these sulfated derivates were evaluated by activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and platelet aggregation assay. The results showed that YCP sulfates significantly prolonged APTT, TT and PT. The derivates showed no effects on thrombin in the presence or in the absence of antithrombin III (AT III) or heparin cofactor II (HC II), while the derivates effectively inhibited factor Xa in the presence of AT III. At the same time, YCP-SH also possessed potent antiplatelet aggregation activity in vitro compared with aspirin. YCP sulfates specifically interfered with different stages of the coagulation cascade, and the anticoagulant activity improved with the increasing DS and decreased Mw.  相似文献   

4.
Leech saliva is shown to contain protein platelet aggregation inhibitors and a range of selective low molecular weight (LMW) aggregation inhibitors. Gel filtration on Bio-Gel P-2 (cut-off kDa) yields a protein fraction (Fr. I) and three LMW fractions. Fr. I inhibits aggregation induced by collagen, ADP, epinephrine and arachidonic acid. Of all the fractions, only one, Fr. II (LMW) specifically inhibits aggregation induced by platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine). Fr. II also inhibits thrombin-induced platelet aggregation. Fr. III inhibits aggregation induced by ADP, epinephrine and arachidonic acid, and Fr. IV only that induced by arachidonic acid. Fr. II also inhibits PAF- and thrombin-induced thromboxane generation in platelets, but does not inhibit arachidonic acid-induced thromboxane generation. Efforts to separate the anti-PAF from the anti-thrombin activity have been unsuccessful. The inhibition may therefore be due to a single inhibitor, though it may also be due to several inhibitors. Fr. II also inhibits superoxide anion production in formyl Met-Leu-Phe (fMLP)- and ionophore 23187- stimulated neutrophils. This may be due to the inhibition of the effects of PAF generated within the cell. Preliminary results suggest that the Fr. II inhibitor(s) is (are) amphipathic. The interaction of platelets with PAF and their interaction with the inhibitor(s) are mutually exclusive, and the inhibition may be competitive.  相似文献   

5.
Previous studies have demonstrated that human plasma alpha 2-macroglobulin (alpha 2 M) possesses a single subunit chain (Mr approximately 185,000) when incubated with dodecyl sulfate and dithiothreitol at 37 degrees C and analyzed by dodecyl sulfate-gel electrophoresis. The present study details the observation that heating alpha 2 M to 90 degrees C under identical conditions produces at least two additional polypeptide chains, termed bands II and III, with apparent molecular weights of 125,00 and 62,000. The generation of these fragments is enhanced by increasing the time of incubation. The appearance of band II composition of the buffer, dodecyl sulfate concentrations, or alpha 2 M protein concentration in the incubation mixture. The electrophoretic bands II and III of alpha 2 M have dissimilar 125I-labeled tryptic peptide digests and also differ in their amino acid composition. The heat-induced fragmentation of alpha 2M is not affected by the inclusion of a variety of low molecular weight protease inhibitors, suggesting that the appearance of bands II and III is not due to enzyme-catalyzed hydrolysis. When the subunit chain of alpha 2M is first cleaved by trypsin into the previously described Mr = 85,000 derivative, neither band II nor III material, nor other lower molecular weight products are generated by heat treatment. Furthermore, preincubation of alpha 2M with methylamine prevents fragmentation of the subunit chain. These results indicate that these fragments are neither pre-existing subunits of alpha 2M nor derivatives formed prior to treatment for gel analysis. These data provide evidence that a covalent bond in the alpha 2M molecule is unusually susceptible to heat-induced cleavage.  相似文献   

6.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

7.
Reduced and cyanoethylated glutenin was fractionated into three fractions (F I, F II and F III) by gel filtration on Sephadex G–100 in 0.1 m acetic acid. The molecular weight determination was made with these three fractions by sedimentation equilibrium in 6.5 m guanidine hydrochloride containing 0.01 m acetic acid. The molecular weight obtained was 44,000 for F II, and 32,000 for F III. F I showed a distribution of molecular weight due to the aggregation. The average molecular weight of F I was 52,000, being 27,000 at the meniscus and 98,000 at the bottom. The estimation of molecular weight by SDS–PAGE* gave overestimated values for glutenin polypeptides, as was already reported for gliadin.  相似文献   

8.
Based on ticlopidine active as an ADP receptor antagonist for inhibiting platelet aggregation in clinical test, and upon finding (±)-1,2-substituted-7-sulfonylamide/amide-1,2,3,4-tetrahydroisoquinoline (11–31) inhibited of platelet aggregation, a series of (±)-1-o-chlorophenyl-2-substituted-tetrahydroisoquinoline derivatives was designed and synthesized. Four analogs proved to be potential antiplatelet aggregation agents, and compound 9 (TQP-3, applying for patent) which inhibits ADP-induced human platelet aggregation with IC50 values of approximately 0.206 nM was the most active. Compound 2 is more active than compound 1, which (Type I) is similar to ticlopidine. This is because there is a spacial hindrance in compound 1, and the o-chloro group of compound 2 may play the same a role as o-chloro group of ticlopidine. On the other hand, with the different substitutions at different positions on the 2-substituted phenylacyl group, their inhibition of platelet aggregation differs. These compounds with m-substituted group (5, 7, 9) showed a higher IC50 value for inhibiting ADP-induced human platelet aggregation than those with o-substituted group (4, 6) or p-substituted group (3, 8). It was observed that their inhibition is bromine-substituted derivative (9), chlorine-substituted derivative (7), and nitro-substituted derivative (5) in turn. Moreover, these compounds (Type II) may be more similar to clopidogrel than to ticlopidine due to the acyl group at 2 position of the nucleus playing a role as the ester group of clopidogrel. It was conjectured that these analogs function as a potential antiplatelet aggregation role by acting as ADP receptor antagonists.  相似文献   

9.
DNA polymerase [EC 2.7.7.7] activities present in hypotonic extract from rat ascites hepatoma AH130 cells were eluted in three separable peaks on DEAE-cellulose column chromatography. Peak I activity had an alkaline pH optimum, and was relatively resistant to SH-blocking reagents and salt concentration. These properties of DEAE peak I are typical of low molecular weight DNA polymerase. DEAE peak II and peak III activities possessed properties corresponding to high molecular weight (6-8 S) polymerase; they showed maximal activity at neutral pH, and were sensitive to SH-blocking reagents and salt. No low molecular weight polymerase activity was released from DEAE peak II or peak III by salt treatment, though partial conversion from DEAE peak II to peak III was observed on the same treatment.  相似文献   

10.
An inactive derivative of wheat germ agglutinin, which is a strong activator of blood platelets, was prepared by selective chemical modification of the lectin with cyanogen bromide at acid pH. The derivative was then used as a probe to learn about the initial events in platelet stimulation by physiological agents. Amino acid analysis of the modified lectin confirmed specific cleavage of a methionine residue. Gel filtration studies indicated a molecular weight for the lectin derivative similar to the unmodified lectin. In gel electrophoresis in the presence of sodium dodecyl sulfate, reduced samples of the derivative showed two bands and the main component migrated slightly faster than the native lectin. The derivative retained the capacity to precipitate an antibody to the lectin although at least one of the antigenic sites was lost due to chemical modification. The derivative did not compete with the unmodified lectin for binding to platelets. Unlike the parent lectin, the derivative did not aggregate platelets even at a ten fold higher concentration. Under similar conditions, there were about 1.0 X 10(5) binding sites/platelet for the lectin derivative with an apparent dissociation constant of 1.7 microM compared to 5 X 10(5) sites/cell and a dissociation constant of 0.4 microM for the native lectin. Overnight incubation of platelets or red cells with the derivative in microtiter plates showed about 2-5% agglutinating activity for the derivative compared to the unmodified lectin. Incubation of platelets with the lectin derivative inhibited platelet aggregation by thrombin while aggregation induced by a number of other agents was not significantly affected. This inhibitory effect of the lectin derivative on thrombin-induced platelet aggregation could be readily reversed with GlcNAc. The lectin derivative may be a useful tool to explore the structure-function relationship of cell surface components.  相似文献   

11.
An extract of rat liver or human platelet displayed three cyclic 3':5'-nucleotide phosphodiesterase activity peaks (I, II, and III) in a continuous sucrose density gradient when assayed with millimolar adenosine 3':5'-monophosphate (cAMP) or guanosine 3':5'-monophosphate (cGMP). The three fractions obtained from each nucleotide were not superimposable. The molecular weights corresponding to the three activity peaks of cAMP phosphodiesterase in rat liver were approximately: I, 22,000; II, 75,000; and III, 140,000. In both tissues, fraction I was barely detectable when assayed with micromolar concentrations of either nucleotide, presumably because fraction I has low affinity for cAMP and cGMP. Any one of the three forms upon recentrifugation on the gradient generated the others, indicating that they were interconvertible. The multiple forms appear to represent different aggregated states of the enzyme. The ratio of the three forms of cAMP phosphodiesterase in the platelet was shifted by dibutyryl cAMP (B2cAMP) and by the enzyme concentration. B2cAMP enhanced the formation of fraction I. Low enzyme concentration favored the equilibrium towards fraction I, while high enzyme concentration favored fraction III. When phosphodiesterase activities in the extract of rat liver, human platelets, or bovine brain were examined as a function of enzyme concentration, rectilinear rates were observed with micromolar, but not with millimolar cAMP or cGMP. The specific activity with millimolar cAMP was higher with low than with high protein concentrations, suggesting that the dissociated form catalyzed the hydrolysis of cAMP faster than that of the associated form. In contrast, the specific activity with millimolar cGMP was lower with low than with high protein concentrations. Supplementing the reaction mixture with bovine serum albumin to a final constant protein concentration did not affect the activity, suggesting that the concentration of the enzyme rather than that of extraneous proteins affected the enzyme activity. A change in enzyme concentration affected the kinetic properties of phosphodiesterase. A low enzyme concentration of cAMP phosphodiesterase yielded a linear Lineweaver-Burk plot, and a Km of 1.2 X 10(-4) M (bovine), 3 X 10(-5) M (platelet), or 5 X 10(-4) M (liver), while a high enzyme concentration yielded a nonlinear plot, and apparent Km values of 1.4 X 10(-4) M and 2 X 10(-5) M (brain), 4 X 10(-5) M and 3 X 10(-6) M (platelet), or 4 X 10(-5) M and 3 X 10(-6) (liver). Since a low enzyme concentration favored fraction I, the dissociated form, whereas a high enzyme concentration favored fraction III, the associated form, these kinetic constants suggest that the dissociated form exhibits a high Km and the associated form exhibits a low Km. In contrast, a high enzyme concentration gave a linear kinetic plot for cGMP phosphodiesterase, while a low enzyme concentration gave a nonlinear plot...  相似文献   

12.
Xing R  Liu S  Guo Z  Yu H  Wang P  Li C  Li Z  Li P 《Bioorganic & medicinal chemistry》2005,13(5):1573-1577
The antioxidant potency of different molecular weight (DMW) chitosan and sulfated chitosan derivatives was investigated employing various established in vitro systems, such as superoxide (O(2)(.-))/hydroxyl ((-.)OH) radicals scavenging, reducing power, iron ion chelating. As expected, we obtained several satisfying results, as follows: firstly, low molecular weight chitosan had stronger scavenging effect on O(2)(.-) and (-.)OH than high molecular weight chitosan. For example the O(2)(.-) scavenging activity of low molecular weight chitosan (9 kDa) and high molecular weight chitosan (760 kDa) were 85.86% and 35.50% at 1.6 mg/mL, respectively. Secondly, comparing with DMW chitosan, DMW sulfated chitosans had the stronger inhibition effect on O(2)(.-). At 0.05 mg/mL, the scavenging activity on O(2)(.-) reached 86.26% for low molecular weight chitosan sulfate (9 kDa), but that of low molecular weight chitosan (9 kDa) was 85.86% at 1.6 mg/mL. As concerning chitosan and sulfated chitosan of the same molecular weight, scavenging activities of sulfated chitosan on superoxide and hydroxyl radicals were more pronounced than that of chitosan. Thirdly, low molecular weight chitosan sulfate had more effective scavenging activity on O(2)(.-) and (-.)OH than that of high molecular weight chitosan sulfate. Fourthly, DMW chitosans and sulfated chitosans were efficient in the reducing power, especially LCTS. Their orders were found to be LCTS>CTS4>HCTS>CTS3>CTS2>CTS1>CTS. Fifthly, CTS4 showed more considerable ferrous ion-chelating potency than others. Finally, the scavenging rate and reducing power of DMW chitosan and sulfated derivatives increased with their increasing concentration. Moreover, change of DMW sulfated chitosans was the most pronounced within the experimental concentration. However, chelating effect of DMW chitosans were not concentration dependent except for CTS4 and CTS1.  相似文献   

13.
Angiotensin I-converting enzyme (peptidyl dipeptide hydrolase, EC 3.4.15.1) was solubilized from the membrane fraction of human lung using trypsin treatment and purfied using columns of DE 52-cellulose, hydroxyapatite and Sephadex G-200. The purified enzyme was shown to convert angiotensin I to angiotensin II and also to inactivate bradykinin. The specific activity of the enzyme was 9.5 units/mg protein for Hippuryl-His-Leu-OH and 0.665 mumol/min per mg protein for angiotensin I. The enzymic activity obtained after trypsin treatment (1 mg/200 mg protein) for 2 h could be divided into three components: (i) an enzyme of molecular weight 290 000 (peak I), (ii) an enzyme of molecular weight 180 000 (peak II) and (iii) an enzyme of molecular weight 98 000 (peak III), by columns of DE 52-cellulose and Sephadex G-200. Km values of peak I, II and III fraction for Hippuryl-His-Leu-OH were identical at 1.1 mM. pH optimum of the enzyme was 8.3 for Hippuryl-His-Leu-OH.  相似文献   

14.
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.  相似文献   

15.
Human blood platelet contained at least three kinetically distinct forms of 3': 5'-cyclic nucleotide phosphodiesterase (3': 5'-cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) (F I, F II, and F III) which were clearly separated by DEAE-cellulose column chromatography. Although a few properties of the platelet phosphodiesterases such as their substrate affinities and DEAE-cellulose profile resembled somewhat those of the three 3': 5'-cyclic nucleotide phosphodiesterase in rat liver reported by Russell et al. [10], there were pronounced differences in some properties between the platelet and the liver enzymes: (1) the platelet enzymes hydrolyzed both cyclic nucleotides and lacked a highly specific cyclic guanosine 3': 5'-monophosphate (cyclic GMP) phosphodiesterase and (2) kinetic data of the platelet enzymes indicated that cyclic adenosine 3': 5'-monophosphate (cyclic AMP) and cyclic GMP interact with a single catalytic site on the enzyme. F I was a cyclic nucleotide phosphodiesterase with a high Km for cyclic AMP and a negatively cooperative low Km for cyclic GMP. F II hydrolyzed cyclic AMP and cyclic GMP about equally with a high Km for both substrates. F III was low Km phosphodiesterase which hydrolyzed cyclic AMP faster than cyclic GMP. Each cyclic nucleotide acted as a competitive inhibitor of the hydrolysis of the other nucleotide by these three fractions with Ki values similar to the Km values for each nucleotide suggesting that the hydrolysis of both cyclic AMP and cyclic GMP was catalyzed by a single catalytic site on the enzyme. However, cyclic GMP at low concentration (below 10 muM) was an activator of cyclic AMP hydrolysis by F I. Papaverine and EG 626 acted as competitive inhibitors of each fraction with virtually the same Ki value in both assays using either cyclic AMP or cyclic GMP as the substrate. The ratio of cyclic AMP hydrolysis to cyclic GMP hydrolysis by each fraction did not vary significantly after freezing/thawing or heat treatment. These facts also suggest that both nucleotides were hydrolyzed by the same catalytic site on the enzyme. The differences in apparent Ki values for inhibitors such as cyclic nucleotides, papaverine and EG 626 would indicate that three enzymes were different from each other. Centrifugation in a continuous sucrose gradient revealed sedimentation coefficients F I and II had 8.9 S and F III 4.6 S. The molecular weight of these forms, determined by gel filtration on a Sepharose 6B column, were approx. 240 000 (F I and II) and 180 000 (F III). F III was purified extensively (70-fold) from homogenate, with a recovery of approximately 7%.  相似文献   

16.
S Mickel  V Arena  Jr    W Bauer 《Nucleic acids research》1977,4(5):1465-1482
A series of closed circular (I) plasmid DNAs has been derived from drug resistance factor R12, and the nicked circular (II) and linear (III) derivatives of these molecules prepared by irradiation in the presence of ethidium bromide and by treatment with restriction enzyme EcoRI, respectively. These DNAs encompass the molecular weight range 3.6 to 61 megadaltons. The base compositions range from 45% to 51% (GC) as estimated by buoyant density determinations. The smaller plasmids are significantly less supercoiled (9-10%) than are the larger (12-13%). The gel electrophoretic behavior of the three DNA structural forms was determined as a function of molecular weight in agarose gels of concentrations ranging from 0.7% to 1.6% and at electrophoresis salt concentrations from 0.02 M to 0.08 M sodium acetate. The mobilities of DNAs I and III undergo a reversal relative to each other at a molecular weight which decreases with increasing agarose gel concentration. The molecular weight at which DNA II fails to enter a gel depends upon the ionic strength during electrophoresis but not upon the gel concentration.  相似文献   

17.
We observed, for the first time, the elementary process for the ordered self-assembly formation of myosin in solution. It was realized exclusively under the specific condition of 200 mM KCl, 5 mM phosphate buffer, pH 7.08, at 15-20 degrees C, which is called the transition-generating condition (TGC). Described more in detail: pure myosin extracted from rabbit skeletal muscle exhibited the structural transition in its association form only when the myosin concentration c was changed under TGC. The myosin solubility was saturated in both edges of the total myosin concentration c > 10.0 mg/mL (solubility region II) and c < or = 0.25 mg/mL (solubility region I). In the intermediate region, the association structure of myosin changed stepwise with decreasing c. The steps were classified into four regions: region I (c < or = 0.25 mg/mL), II (0.25 < or = c < or = 0.50 mg/mL), III (0.50 < or = c < or = 5.0 mg/mL), and IV (c > 5.0 mg/mL). In each region except II, the plot of the relative soluble myosin concentration c(aq)/c against c(-1) gave a straight line of different slopes, certifying that myosin constructs self-assemblies by the closed association mechanism and that the self-assembly takes dual structures in each region. In region II, a drastic transition occurred in the self-assembled dual structures. Here, a highly associated (insoluble) giant assembly would break into soluble assemblies composed of several myosin molecules. The solubility region I originates a driving force for this structural transition. The basic binding unit of the self-assembly would be a parallel myosin-dimer constructed by the intermolecular axial staggers of 14.3 and 43 nm, as is observed by X-ray diffraction for the thick filament assembly or light meromyosin paracrystals. Myosin could take a single rod-like chain form only in an extremely low concentration region of c < or = c(aq,0) (= 0.053 mg/mL). The association behavior revealed in the present study suggests strongly that the complementary charge cluster and its electrostatic interaction between parallel myosin rods play a crucial role for the ordered self-assembly formation and that the specific electrostatic atmosphere of the solution under TGC is essential to the association mechanism in skeletal muscle myosin, or the thick filament formation of the mammals.  相似文献   

18.
A simple and selective aptamer (ssDNA)‐modified nanogold probe (AussDNA) was prepared for the determination of trace As(III) in HEPES buffer solution (pH 8.2) containing 0.05 mol/L NaCl. The method coupled the aptamer reaction of AussDNA–As(III) and the resonance Rayleigh scattering (RRS) of nanogold aggregations at 278 nm. When the As(III) concentration increased, the RRS intensity at 278 nm increased to form more nanogold aggregation and a stable As(III)–ssDNA complex. Under selected conditions, the increased RRS intensity (ΔI) was linear to the concentration of As(III) in the range 3.8–230.4 ng/mL, with a detection limit of 1.9 ng/mL. This RRS method was applied to detect As(III) in water samples, with simplicity, sensitivity and selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The stabilities of subtilisin and lysozyme under hydrostatic pressures up to 200 MPa were investigated for up to 7 days at 25 degrees C. Methods were chosen to assess changes in tertiary and secondary protein structure as well as aggregation state. Tertiary structure was monitored in situ with second derivative UV spectroscopy and after pressure treatment by dynamic light scattering and second derivative UV spectroscopy. Secondary structure and potential secondary structural changes were characterized by second derivative FTIR spectroscopy. Changes in aggregation state were assessed using dynamic light scattering. Additionally, protein concentration balances were carried out to detect any loss of protein as a function of pressure. For the conditions tested, neither protein shows measurable changes in tertiary or secondary structure or signs of aggregation. Lysozyme concentration balances show no dependence on pressure. Subtilisin concentration balances at high protein concentration (4 mg/mL and higher) do not show pressure dependence. However, the concentration balances carried out at 0.4 mg/mL show a clear sign of pressure dependence. These results may be explained by protein interaction with the vial surface and appear to be rate limited by the equilibrium between active and inactive protein on the surface. Pressure increases protein loss, and the estimated partial molar volume change between the two states is estimated to be -20 +/- 10 mL/mol.  相似文献   

20.
The purification is described of rat hepatic hexokinase type III and kidney hexokinase type I on a large scale by using a combination of conventional and affinity techniques similar to those previously used for the purification of rat hepatic glucokinase [Holroyde, Allen, Storer, Warsy, Chesher, Trayer, Cornish-Bowden & Walker (1976) Biochem. J. 153, 363-373] and muscle hexokinase type II [Holroyde & Trayer (1976) FEBS Lett. 62, 215-219]. The key to each purification was the use of a Sepharose-N-aminoacylglucosamine affinity matrix in which a high degree of specificity for a particular hexokinase isoenzyme could be introduced by either varying the length of the aminoacyl spacer and/or varying the ligand concentration coupled to the gel. This was predicted from a study of the free solution kinetic properties of the various N-aminoacylglucosamine derivatives used (N-aminopropionyl, N-aminobutyryl, N-aminohexanoyl and N-aminooctanoyl), synthesized as described by Holroyde, Chesher, Trayer & Walker [(1976) Biochem. J. 153, 351-361]. All derivatives were competitive inhibitors, with respect to glucose, of the hexokinase reaction, and there was a direct correlation between the Ki for a particular derivative and its ability to act as an affinity matrix when immobilized to CNBr-activated Sepharose 4B. Muscle hexokinase type II could be chromatographed on the Sepharose conjugates of all four N-aminoacylglucosamine derivatives, although the N-aminohexanoylglucosamine derivative proved best. This same derivative was readily able to bind hepatic glucokinase and hexokinase type III, but Sepharose-N-amino-octanoyl-glucosamine was better for these enzymes and was the only derivative capable of binding kidney hexokinase type I efficiently. Separate studies with yeast hexokinase showed that again only the Sepharose-N-amino-octanoylglucosamine was capable of acting as an efficient affinity matrix for this enzyme. Implications of these studies in our understanding of affinity-chromatography operation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号