首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of deacetylation (DD) is one of the most important properties of chitosan. Therefore, a simple, rapid and reliable method for the determination of DD of chitosan is essential. In this report, two new potentiometric titration functions are derived for the determination of DD of chitosan. The effects of the precipitation and the errors induced in pH measurement are discussed in detail. To make this method more simple and reliable, two universal pH regions for the accurate plotting of different DD chitosan samples are proposed for the new potentiometric titration functions. The DD values of three chitosan samples obtained with this new method show good agreement with those yielded from elemental analysis and 1H-NMR.  相似文献   

2.
ELISA法检测疫苗中牛血清残留量的适用性研究   总被引:3,自引:3,他引:3  
为了验证ELISA法对病毒性疫苗中残余牛血清蛋白检测的适用性,用牛血清蛋白ELISA测定法与牛血清白蛋白ELISA测定法、牛血清IgG-ELISA测定法对麻疹疫苗、风疹疫苗、腮腺炎疫苗洗涤前病毒培养液、洗涤后病毒收获液以及多种成品疫苗中的残余牛血清蛋白含量进行了测定。结果显示,麻疹疫苗、风疹疫苗、腮腺炎疫苗洗涤前病毒培养液中牛血清白蛋白含量依次为IgG含量的70.5倍、65倍、84.3倍,洗涤后病毒收获液中两者比值分别为4.2、1.8和8.1;牛血清白蛋白ELISA法和牛血清蛋白ELISA法均能检测出疫苗中牛血清白蛋白,但前者测不出牛血清IgG,而后者可准确检测牛血清IgG。牛血清蛋白ELISA测定法可同时检测牛血清白蛋白和牛血清IgG,更适用于疫苗残余牛血清蛋白含量的测定。  相似文献   

3.
The interaction between a cationic polyelectrolyte, chitosan, and an exogenous bovine lung extract surfactant (BLES) was studied using dynamic compression/expansion cycles of dilute BLES preparations in a Constrained Sessile Drop (CSD) device equipped with an environmental chamber conditioned at 37 degrees C and 100% R.H. air. Under these conditions, dilute BLES preparations tend to produce variable and relatively high minimum surface tensions. Upon addition of "low" chitosan to BLES ratios, the minimum surface tension of BLES-chitosan preparations were consistently low (i.e. <5 mJ/m2), and the resulting surfactant monolayers (adsorbed at the air-water interface) were highly elastic and stable. However, the use of "high" chitosan to BLES ratios induced the collapse of the surfactant monolayer at high minimum surface tensions (i.e. >15 mJ/m2). The zeta potential of the lung surfactant aggregates in the subphase suggests that chitosan binds to the anionic lipids (phosphatidyl glycerols) in BLES, and that this binding is ultimately responsible for the changes in the surface activity (elasticity and stability) of these surfactant-polyelectrolyte mixtures. Furthermore the transition from "low" to "high" chitosan to BLES ratios correlates with the flocculation and de-flocculation of surfactant aggregates in the subphase. It is proposed that the aggregation/segregation of "patches" of anionic lipids in the surfactant monolayer produced at different chitosan to BLES ratios explains the enhancing/inhibitory effects of chitosan. These observations highlight the importance of electrostatic interactions in lung surfactant systems.  相似文献   

4.
A new method was developed for the accurate determination of the degree of deacetylation of chitosan. The method involves the complete hydrolysis of chitosan to glucosamine and N-acetylglucosamine by a cooperative action of chitosanolytic enzymes exo-beta-D-glucosaminidase, beta-N-acetylhexosaminidase, and chitosanase, and subsequent determination of the monosaccharides by specific colorimetric assays or HPLC. The conditions required for the complete hydrolysis of chitosan were examined and the degree of deacetylation of several chitosan samples was determined.  相似文献   

5.

Introduction  

Osteoarthritis is characterized by the progressive destruction of cartilage in the articular joints. Novel therapies that promote resurfacing of exposed bone in focal areas are of interest in osteoarthritis because they may delay the progression of this disabling disease in patients who develop focal lesions. Recently, the addition of 80% deacetylated chitosan to cartilage microfractures was shown to promote the regeneration of hyaline cartilage. The molecular mechanisms by which chitosan promotes cartilage regeneration remain unknown. Because neutrophils are transiently recruited to the microfracture site, the effect of 80% deacetylated chitosan on the function of neutrophils was investigated. Most studies on neutrophils use preparations of chitosan with an uncertain degree of deacetylation. For therapeutic purposes, it is of interest to determine whether the degree of deacetylation influences the response of neutrophils to chitosan. The effect of 95% deacetylated chitosan on the function of neutrophils was therefore also investigated and compared with that of 80% deacetylated chitosan.  相似文献   

6.
Germ-free suckling rabbits and minipigs can be recommended as models suitable for the study of different aspects of the pathogenesis of cholera intoxication. In minipigs, individual representatives of intestinal autochthonous microflora produce different effect on the sensitivity of the animals to the toxigenic and choleragenic action of Vibrio cholerae antigen introduced by oral administration, that should also be taken into consideration in the determination of residual toxicity during the trial of new vaccine preparations against cholera.  相似文献   

7.
Stability enhancement of protein-loaded chitosan microparticles under storage was investigated. Chitosan glutamate at 35 kDa and bovine serum albumin as model protein drug were used in this study. The chitosan microparticles were prepared by ionotropic gelation, and polyethylene glycol 200 (PEG 200) was applied after the formation of the particles. All chitosan microparticles were kept at 25°C for 28 days. A comparison was made between those preparations with PEG 200 and without PEG 200. The changes in the physicochemical properties of the microparticles such as size, zeta potential, pH, and percent loading capacity were investigated after 0, 3, 7, 14, and 28 days of storage. It was found that the stability decreased upon storage and the aggregation of microparticles could be observed for both preparations. The reduction in the zeta potential and the increase in the pH, size, and loading capacity were observed when they were kept at a longer period. The significant change of those preparations without PEG 200 was evident after 7 days of storage whereas those with PEG 200 underwent smaller changes with enhanced stability after 28 days of storage. Therefore, this investigation gave valuable information on the stability enhancement of the microparticles. Hence, enhanced stability of chitosan glutamate microparticles for the delivery of protein could be achieved by the application of PEG 200.  相似文献   

8.
We investigated the mechanism for the inhibition of fat digestion by chitosan, and the synergistic effect of ascorbate. The important inhibition characteristics of fat digestion by chitosan from observations of the ileal contents were that it dissolved in the stomach and then changed to a gelled form, entrapping fat in the intestine.

The synergistic effect of ascorbate (AsA) on the inhibition of fat digestion by chitosan is thought not to be acid-dependent but due to the specificity of AsA itself, according to the data resulting from using preparations supplemented with sodium ascorbate (AsN). The mechanism for the synergistic effect is considered to be 1) viscosity reduction in the stomach, which implies that chitosan mixed with a lipid is better than chitosan alone, 2) an increase in the oil-holding capacity of the chitosan gel, and 3) the chitosan–fat gel being more flexible and less likely to leak entrapped fat in the intestinal tract.  相似文献   

9.
The interaction between a cationic polyelectrolyte, chitosan, and an exogenous bovine lung extract surfactant (BLES) was studied using dynamic compression/expansion cycles of dilute BLES preparations in a Constrained Sessile Drop (CSD) device equipped with an environmental chamber conditioned at 37 °C and 100% R.H. air. Under these conditions, dilute BLES preparations tend to produce variable and relatively high minimum surface tensions. Upon addition of “low” chitosan to BLES ratios, the minimum surface tension of BLES-chitosan preparations were consistently low (i.e. < 5 mJ/m2), and the resulting surfactant monolayers (adsorbed at the air-water interface) were highly elastic and stable. However, the use of “high” chitosan to BLES ratios induced the collapse of the surfactant monolayer at high minimum surface tensions (i.e. > 15 mJ/m2). The zeta potential of the lung surfactant aggregates in the subphase suggests that chitosan binds to the anionic lipids (phosphatidyl glycerols) in BLES, and that this binding is ultimately responsible for the changes in the surface activity (elasticity and stability) of these surfactant-polyelectrolyte mixtures. Furthermore the transition from “low” to “high” chitosan to BLES ratios correlates with the flocculation and de-flocculation of surfactant aggregates in the subphase. It is proposed that the aggregation/segregation of “patches” of anionic lipids in the surfactant monolayer produced at different chitosan to BLES ratios explains the enhancing/inhibitory effects of chitosan. These observations highlight the importance of electrostatic interactions in lung surfactant systems.  相似文献   

10.
In weak acidic buffer medium, chitosan binding with an anionic surfactant, such as sodium dodecyl benzene sulphonate (SDBS), sodium lauryl sulphate (SLS) or sodium dodecyl sulphonate (SDS), can result in a significant enhancement of resonance Rayleigh scattering (RRS) intensity. The results showed that under optimum conditions the enhanced RRS intensity is proportional to the concentration of chitosan in the range 0.10–20.0 µg/mL for SDBS, 0.27–15.0 µg/mL for SLS and 0.20–15.0 µg/mL for SDS. Among these, the sensitivity of SDBS is the highest and its detection limit for chitosan is 29 ng/mL, while those of SLS and SDS are 83 and 61 ng/mL, respectively. The method has good selectivity and was applied to the determination of trace amounts of chitosan in practical samples with satisfactory results. Therefore, a simple and convenient method with high sensitivity and selectivity for the determination of chitosan was established. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Along with β-glucans, chitin is the dominant component of the fungal cell wall. Chitosan, the deacetylated form of chitin, has found quite a number of biomedical and biotechnological applications recently. Mushroom chitin could be an important source for chitosan production. A direct determination of chitin and chitosan in mushrooms is of expedient interest. In this paper, a new method for the quantification of chitin and chitosan is described. This method is based on the specific reaction between polyiodide anions and chitosan and on measuring the optical density of the insoluble polyiodide–chitosan complex. After deacetylation, chitin can also be quantified. The specificity of the reaction is used to quantify the polymers in the presence of complex matrices. With this new spot assay, the chitin content of mycelia and fruiting bodies from several basidiomycetes and an ascomycete were analysed. The presented method could also be used for the determination in other samples as well. The chitin content of the analysed species varies between 0.4 and 9.8 g chitin per 100 g of dry mass. Chitosan could not be detected in our mushroom samples, indicating that the glucosamine units are mostly acetylated.  相似文献   

12.
This article describes the optimal conditions for the enzymatic hydrolysis of chitosan and its chemically-modified derivatives using the preparation extracted from the king crab hepatopancrease possessing pronounced hydrolythic activity. The following preparations were used: chitosan with a molecular weight of 700 kDa and an acetylation level of 0.15, carboxymethyl chitosan 200 kDa witih an extent of replacement of 0.23, and N-succinyl chitosan 390 kDa with an extent of replacement of 0.8. Low molecular-weight samples of chitosan and of its modified derivatives were obtained with the yields of 85, 55, and 80%, respectively. The conditions of the hydrolysis were as follows: an enzyme: substrate ratio of 1: 200, 37°C, and 20 h duration of hydrolysis.  相似文献   

13.
A method for the determination of the antimicrobial activity of chitosan with the use of organic salts for the production of pH in the range of 5.5–8.2 was studied. The double-dilution method demonstrated the effectiveness of the determination of the antimicrobial activity of chitosan samples with different molecular weights and solubilities. It was found that the antibacterial activity increased at low pH values with increasing molecular weight, but chitosans with a molecular weight of 5–6 kDa showed higher activity at neutral and slightly alkaline pH levels. Determination of the antimicrobial activity of various chitosan samples at different pH values allowed a more reliable assessment of the potential biological activity of chitosan.  相似文献   

14.
Anticoagulant activity of a sulfated chitosan   总被引:12,自引:0,他引:12  
Chitin prepared from the shells of rice-field crabs (Somanniathelphusa dugasti) was converted into chitosan with a degree of acetylation of 0.21 and then sulfated with chlorosulfonic acid in N,N-dimethylformamide under semi-heterogeneous conditions to give 87% of water-soluble sulfated chitosan with degree of substitution (d.s) of 2.13. 1H NMR revealed the sulfate substitution at C-2, C-3 and C-6. Gel filtration on Sepharose CL-6B of the sulfated chitosan gave three fractions with average molecular weights of 7.1, 3.5, and 1.9 x 10(4). The three sulfated chitosan preparations showed strong anticoagulant activities, with the same mechanism of action observed for standard therapeutic heparin.  相似文献   

15.
Ten chitosan products, prepared as described in part I of this study, were evaluated in jar tests that measured their effectiveness for coagulation of suspended solids and removing turbidity from cheese whey. A polynominal regression analysis was found to be useful for determining the optimal effectiveness of each chistosan preparation, and was expressed as the percent reduction on turbidity per unit concentration of chitosan added. The effectiveness of the chitosan products was found to be inversely related to their molecular-weight values. This situation was different from the findings described in part II of this study, in which the filterability of activated sludge was tested. Enzymatic deproteination yielded chitosan products that performed better than those produced by alkali deproteination. Demineralized products were also more effective than those that had not been demineralized. The preparations deacetylated under a nitrogen atmosphere were more effective than those deacetylated in air, but this was shown to be true only for the first 5 min of deacetylation. When deacetylated for 15 min, no differences were noted. In this study, differences in performance between the various products were largely due to the differing dosages required to achieve the maximum reduction in turbidity of cheese whey, while the maximum responses achieved by the various products tested were about the same. A commercial product, which was less effective as a sludge coagulating agent in part II of this study, was more effective for cheese whey coagulation and turbidity removal than the majority of the experimental chitosan preparations tested.  相似文献   

16.
After staining for the Feulgen nucleal reaction with Schiff's reagent, slides were immediately submerged in running distilled or tap water and washed for 30 sec or longer. Rapid and complete removal of residual Schiff's reagent from the stained tissue will give preparations which show all details characterizing the nucleal reaction, and which are more durable in storage than those processed with the customary washing in a solution of SO2. Care must be taken to insure that all parts of the slides are thoroughly washed and that, on the surface of the sections, no spilled adhesive or other interfering coating retards the washing. Standardization of the procedure for quantitative DNA determination may be facilitated by this modification.  相似文献   

17.
Competitive sorption of platinum and palladium on chitosan derivatives   总被引:3,自引:0,他引:3  
Glutaraldehyde-cross-linked chitosan (GCC), thiourea derivative of chitosan (TGC) and rubeanic acid derivative of chitosan (RADC) have previously been shown to be very efficient at removing platinum and palladium from single component dilute acidic solutions. This study examines the competitive sorption of these metal anions in bi-component mixtures for GCC, TGC and RADC. Palladium sorption is less sensitive to the presence of platinum than the reverse: the maximum sorption capacity decreases less for palladium than for platinum in the presence of the competitor anion (the metals being in their chloro-metal forms). Moreover, the Langmuir-shape of the sorption isotherm for palladium is unaffected (with the usual plateau reached at low residual palladium), while in the case of platinum sorption, the isotherms exhibit a significant decrease of the sorption capacity at high residual platinum concentration which increases with increasing concentrations of palladium. RADC is more selective for palladium over platinum than the other chitosan derivatives. A preliminary study of the competitive sorption kinetics in both batch and fixed bed systems is presented for RADC and confirms the higher affinity of the sorbent for palladium than for platinum.  相似文献   

18.
A fluorescence sensor based on the supermolecular recognition by glycosylated metalloporphyrin for levamisole (LEV) assay is reported. For the preparation of a LEV-sensitive active material, 5, 10, 15, 20-tetrakis[2-(2, 3, 4, 6-tetraacetyl-beta-D-glucopyranosyl)-1-O-phenyl] porphyrin and its metal complexes were synthesized and used in an optode membrane prepared by including glycosylated metalloporphyrin in chitosan matrice. The immobilized glycosylated metalloporphyrin is shown to be weakly fluorescent as a result of the inhibiting of the electron tansfer by central metal. The fluorescence enhancement of the metalloporphyrin modified optode membrane by LEV is based on the complexation with the central metal moiety of metalloporphyrin and weakening the inhibiting of the electron tansfer for metalloporphyrin. The glycosylated metalloporphyrin/chitosan optode membrane showed excellent selectivity toward LEV with respect to a number of interferents and exhibited stable response. The calibration graph obtained with the proposed sensor was linear over the range of 1.3x10(-5)-3.5x10(-7)ML(-1), with a detection limit of 3.5x10(-7)ML(-1) for LEV. The prepared sensor is applied for the determination of LEV in pharmaceutical preparations and the results agreed with the values obtained by the pharmacopoeia method.  相似文献   

19.
A quantitative fluorometric assay for chitosanase activity in bacterial and plant tissues was developed. The assay can be conducted with either finely milled preparations of chitosan in suspension or dissolved chitosan; activity is based on measurements of glucosamine (GlcN) or oligomers of GlcN. GlcN is detected fluorometrically after reaction with fluorescamine with detection in the nanomole range. Fluorescence measurements of chitosanase activity and radioassay of chitinase in commercial preparations of chitinase from Streptomyces griseus revealed that both activities were present. Specific activities for the S. griseus chitosanase using suspended and soluble chitosans were respectively 1.24 and 6.4 mumol GlcN.min-1.mg protein-1. Specific activity of the S. griseus chitinase was 0.98 mumol GlcN.min-1.mg protein-1. Sweet orange callus tissue was tested for chitosanase and chitinase activity. It was necessary to remove small amine-containing molecules from the callus preparations before chitosanase activity could be assayed. The specific activity for chitinase and chitosanase in desalted extracts of nonembryogenic Valencia sweet orange callus tissue was determined to be 18.6 and 89.4 nmol GlcN.min-1.mg protein-1, respectively.  相似文献   

20.
The co-ordination of chitosan and chitin synthesis in Mucor rouxii   总被引:1,自引:0,他引:1  
Chitin synthetase preparations from cell walls and chitosomes of the fungus Mucor rouxii were tested for their ability to synthesize chitosan when incubated with uridine diphosphate N-acetyl-D-glucosamine in the presence of chitin deacetylase. The most effective chitin synthetase preparation was one dissociated from cell walls with digitonin. The rate of chitosan synthesis by the wall-dissociated chitin synthetase was about three times that of an equivalent amount of cell walls. The chitosan-synthesizing ability of chitosomes was relatively low, but was more than tripled by treatment with digitonin. Presumably, digitonin improves chitosan yields of dissociating chitin synthetase. The dissociated enzyme would produce dispersed chitin chains that could be attacked by chitin deacetylase before they have time to crystallize into microfibrils. The regulation of chitin and chitosan syntheses in vivo may be determined by the organization of chitin synthetase molecules at the cell surface. Those molecules that remain organized as a complex, similar if not identical to that found in chitosomes, would produce mainly chitin. Chitosan would be preferentially produced by chitin synthetase molecules which are dispersed upon reaching the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号