首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aucubin is an iridoid glycoside with demonstrable hepatoprotective and anti-osteoporotic effects. Herein, using microglial cells and lipopolysaccharide (LPS) to induce inflammatory responses, we studied the signaling pathways involved in the anti-inflammatory action of aucubin and their influence on the expression of several genes known to be involved in inflammation. Aucubin inhibited LPS-stimulated pro-inflammatory responses by suppressing the production of nitric oxide and prostaglandin E2. Furthermore, aucubin inhibited inducible nitric oxide synthase and cyclooxygenase-2 at both the protein and mRNA levels. In addition, aucubin inhibited pro-inflammatory cytokine production in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that aucubin inhibited the LPS-induced activation of nuclear factor-kappa B (NF-κB) translocation and phosphorylation of phosphatidylinositol 3-kinases (PI3K)/Akt as well as of mitogen-activated protein kinases (MAPKs), which are upstream molecules responsible for controlling inflammatory reactions. These results suggest that aucubin may exert anti-neuroinflammatory responses by suppressing the LPS-induced expression of pro-inflammatory mediators by blocking the activation of NF-κB, PI3K/Akt, and MAPK signaling pathways in microglial cells.  相似文献   

2.
3.
CCL5 is a key in limiting mycobacterial infection. Although NF-κB has been implicated, signaling cascades involved in CCL5 production by epithelial cells following infection with Mycobacterium bovis BCG are still not defined. Here we show that using pharmacological inhibition of sphingosine kinase (SPK), striking inhibition of M. bovis BCG-induced CCL5 protein was observed. Phosphatidylinositol 3-kinase (PI3K) and Akt were also important for CCL5 production by epithelial cells infected with M. bovis BCG. Moreover, there was increased activation of PI3K, IKK/αβ and NF-κB in A549 cells infected with M. bovis BCG. Importantly, the PI3K activation was dependent on SPK. Finally, M. bovis BCG increases the recruitment of p300 with NF-κB in A549 cells. Together, these studies are the first to show that M. bovis BCG-induced CCL5 secretion is dependent on the SPK/PI3K/Akt/NF-κB and p300 signaling pathway. The regulatory pathways of M. bovis BCG-induced CCL5 production can potentially be exploited therapeutically.  相似文献   

4.
Fas ligand (FasL) belongs to the TNF family of death ligands, and its binding to the FasR leads to activation of several downstream signaling pathways and proteins, including NF-κB and PI3K/Akt. However, it is not known whether cross-talk exists between NF-κB and PI3K/Akt in the context of FasL signaling. We demonstrate using both human renal epithelial 293T cells and Jurkat T-lymphocyte cells that although FasL activates both Akt and NF-κB, Akt inhibits FasL-dependent NF-κB activity in a reactive oxygen species-dependent manner. Cellular FLICE-inhibitory protein (c-FLIP), an antioxidant and an important component of the death-inducing signaling complex, also represses NF-κB upstream of the regulatory IκB kinase-γ protein subunit in the NF-κB signaling pathway, and positive cross-talk exists between Akt and c-FLIP in the context of inhibition of FasL-induced NF-κB activity. The presence of two death effector domains of c-FLIP and S-nitrosylation of its caspase-like domain were found to be important for mediating c-FLIP-dependent downregulation of NF-κB activity. Taken together, our study reveals a novel link between NF-κB and PI3K/Akt and establishes c-FLIP as an important regulator of FasL-mediated cell death.  相似文献   

5.
6.
冷诱导RNA结合蛋白( cold-inducible RNA-binding protein, CIRBP)是哺乳动物体内发现的第一个冷诱导蛋白。这种蛋白质在机体内各个组织与器官中均广泛表达,并在正常生理状态或应激条件下,广泛参与多个生物学过程,例如细胞增殖、发展、凋亡、分化和生物节律调节等多个方面。随着研究的深入,发现CIRBP具有一些新的功能,例如在一些炎症的发生和肿瘤的发生过程中,起到促进作用与作为新一代的原癌基因等。CIRBP发挥作用的信号通路,主要有胞外信号调节激酶/丝裂原活化蛋白激酶(extracellular signal-regulated kinases/mitogen-activated protein kinases, ERK/MAPK)、磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B, PI3K/PKB)、无翅和整合基因(wingless and integration 1,Wnt)、核因子κB(nuclear factor κB, NF-κB)等。本文针对CIRBP的生物学功能和相关信号通路的最新研究进展加以综述,希望能为细胞生物学基础研究与利用该蛋白质进行临床有关疾病的诊治提供新的思路。  相似文献   

7.
Lipopolysaccharide (LPS) activates a broad range of signalling pathways including mainly NF-κB and the MAPK cascade, but recent evidence suggests that LPS stimulation also activates the PI3K pathway. To unravel the specific roles of both pathways in LPS signalling and gene expression profiling, we investigated the effects of different inhibitors of NF-κB (BAY 11-7082), PI3K (wortmannin and LY294002) but also of mTOR (rapamycin), a kinase acting downstream of PI3K/Akt, in LPS-stimulated RAW264.7 macrophages, analyzing their effects on the LPS-induced gene expression profile using a low density DNA microarray designed to monitor the expression of pro-inflammatory genes. After statistical and hierarchical cluster analyses, we determined five clusters of genes differentially affected by the four inhibitors used. In the fifth cluster corresponding to genes upregulated by LPS and mainly affected by BAY 11-7082, the gene encoding MMP9 displayed a particular expression profile, since rapamycin drastically enhanced the LPS-induced upregulation at both the mRNA and protein levels. Rapamycin also enhanced the LPS-induced NF-κB transactivation as determined by a reporter assay, phosphorylation of the p38 and Erk1/2 MAPKs, and counteracted PPAR activity. These results suggest that mTOR could negatively regulate the effects of LPS on the NF-κB and MAPK pathways. We also performed real-time RT-PCR assays on mmp9 expression using rosiglitazone (agonist of PPARγ), PD98059 (inhibitor of Erk 1/2) and SB203580 (inhibitor of p38MAPK), that were able to counteract the rapamycin mediated overexpression of mmp9 in response to LPS. Our results suggest a new pathway involving mTOR for regulating specifically mmp9 in LPS-stimulated RAW264.7 cells.  相似文献   

8.
9.
脓毒症是外科重症监护病房(ICU)的主要死亡原因。近年来其发病呈上升趋势,且住院费用极昂贵,并缺乏有效的救治手段,已成为重症医学研究的重点。目前,关于脓毒症的发病机制并不清楚。研究表明,细胞内及细胞间多种信号通路如核因子κB(NF-κB)通路、丝裂原激活的蛋白激酶(MAPK)通路、JAK激酶/信号转导和转录激活子(JAK/STAT)通路、磷脂酰肌醇3激酶(PI3K/Akt)通路、胆碱能抗炎通路等及其下游的分子都参与脓毒症的发生发展。微小RNA(miRNA)作为小分子非编码RNA,通过转录后水平抑制靶基因的表达而参与细胞的多种过程。miRNA可以调控免疫细胞的分化及免疫反应,其不仅可以直接调控炎症因子的表达,还可作用于炎症信号传导通路的其他关键分子而间接调控脓毒症的发生发展。因此深入研究miRNA在脓毒症中的调节作用,可能为脓毒症的预防和治疗开拓新的思路。本文就参与脓毒症的信号通路及其下游分子以及miRNA进行总结,以利于进一步阐明脓毒症的病理生理机制,为脓毒症的预防和治疗找到合理有效的切入点。  相似文献   

10.
11.
A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.  相似文献   

12.
13.
14.
Tumor suppressors function in a coordinated regulatory network, and their inactivation is a key step in carcinogenesis. The tumor suppressor Par-4 is a novel integral player in the PTEN network. Thus, Par-4 is absent in a high percentage of human prostate carcinomas, and its loss is concomitantly associated with PTEN loss. Genetic ablation of Par-4 induces fully invasive prostate carcinomas in PTEN-heterozygous mice. In contrast, Par-4 deficiency alone, like PTEN heterozygosis, results in lesions that are unable to progress beyond the benign neoplastic stage known as PIN. At this PIN transition, the mutual induction of Par-4 and PTEN is an additional regulatory step in preventing cancer progression. Par-4 deficiency cooperates with PTEN haploinsufficiency in prostate cancer initiation and progression and their simultaneous inactivation, in addition to enhancing Akt activation, sets in motion a unique mechanism involving the synergistic activation of NF-κB. These results suggest that the concurrent interruption of complementary signaling pathways targeting PI3K/Akt and NF-κB activation could provide new and effective strategies for cancer therapy.  相似文献   

15.
The macrophage migration-inhibitory factor (MIF) is a pro-inflammatory cytokine first known for its effect on macrophage migration and activation. Recent studies have shown that MIP plays a critical role in tumor growth, angiogenesis, and metastasis. Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effects of MIF on human chondrosarcoma cells are largely unknown. In the present study, MIF was found to increase the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. The phosphatidylinositol 3-kinase (PI3K), Akt, and NF-κB pathways were activated by MIF treatment, and the MIF-induced expression of integrin and migration activity were inhibited by the specific inhibitors and mutant forms of PI3K, Akt, and NF-κB cascades. In addition, migration-prone sublines demonstrated that increased cell migration ability was correlated with increased expression of MIF and αvβ3 integrin. Taken together, our results indicate that MIF enhanced the migration of the chondrosarcoma cells by increasing αvβ3 integrin expression through the PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

16.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

17.
The structural proteins cytokeratin 18 (CK18) and its coexpressed complementary partner CK8 are expressed in a variety of adult epithelial organs and may play a role in carcinogenesis. In this study, we focused on the biological functions of CK18, which is thought to modulate intracellular signaling and operates in conjunction with various related proteins. CK18 may affect carcinogenesis through several signaling pathways, including the phosphoinositide 3-kinase (PI3K)/Akt, Wnt, and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways. CK18 acts as an identical target of Akt in the PI3K/Akt pathway and of ERK1/2 in the ERK MAPK pathway, and regulation of CK18 by Wnt is involved in Akt activation. Finally, we discuss the importance of gaining a more complete understanding of the expression of CK18 during carcinogenesis, and suggest potential clinical applications of that understanding.  相似文献   

18.
19.
Interleukin-6 (IL-6) is a multi-effective cytokine involved in multiple immune responses. Whether fibroblasts also turn out to be a cytokine IL-6 factory during interaction with Treponema pallidum is not yet understood. To explore whether fibroblasts participate in inflammation due to syphilis, a series of experiments were performed to explore the role of T. pallidum lipoprotein Tp47 in IL-6 production in human dermal fibroblasts. The Toll-like receptor 2 (TLR2) and participating signalling pathways in this process were also evaluated. The results showed that the expressions of IL-6 and the protein levels of TLR2 in fibroblasts were upregulated after stimulation with Tp47, and this effect was impeded by the TLR2 inhibitor C29. In addition, Tp47 promoted the phosphorylation of p38, PI3K/Akt, and nuclear factor-kappaB (NF-κB), and the translocation of NF-κB in fibroblasts. Moreover, p38, PI3K, and NF-κB inhibitors significantly reduced IL-6 production in fibroblasts stimulated with Tp47. Furthermore, the TLR2 inhibitor C29 inhibited the phosphorylation of p38, Akt, and NF-κB, and the translocation of NF-κB in fibroblasts. In conclusion, our results showed that Tp47 enhanced IL-6 secretion in human dermal fibroblasts through TLR2 via p38, PI3K/Akt, and NF-κB signalling pathways. These findings contribute to our understanding of syphilis inflammation.  相似文献   

20.
Hexamethylene Bisacetamide (HMBA) is a hybrid polar compound originally developed as a differentiation inducing agent. We show in this study that HMBA can inhibit activation of several NF-κB target genes in both lung and breast cancer cell lines. Furthermore, consistent with its ability to inhibit NF-κB function, HMBA can also sensitize cells to apoptosis. We show that HMBA mediates inhibition of the Akt and ERK/MAPK cascade, both of which are critical for cell survival and proliferation and are well known regulators of NF-κB activation. We also show that PTEN negative breast cancer cells which have hyper activation of the PI3K/Akt pathway show increased sensitivity to growth inhibitory effects of combination of HMBA and TNFα. Furthermore, HMBA can decrease the kinase activity of the IKK complex leading to defective phosphorylation of IκBα and Ser536 of p65. This study gives mechanistic insight into the mechanism of action of HMBA, provides the rationale for the potential use of HMBA in combination with various existing kinase inhibitors in combination therapy and also suggests useful biomarkers for monitoring tumor response to HMBA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号