首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.  相似文献   

2.
3.
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 (Acer palmatum), K9 (Acer pseudosieboldianum) and K13 (Cercis chinensis) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.  相似文献   

4.

Objective

To screen for the quorum-sensing (QS) inhibitors from marine-derived fungi and evaluate their anti-QS properties in Pseudomonas aeruginosa.

Results

QS inhibitory activity was found in secondary metabolites of a marine fungus Fusarium sp. Z10 using P. aeruginosa QSIS-lasI biosensor. The major active compound of this fungus was isolated by HPLC and identified as equisetin. Subinhibitory concentration of equisetin could inhibit the formation of biofilm, swarming motility, and the production of virulence factors in P. aeruginosa. The inhibition of las, PQS, and rhl system by equisetin were determined using Escherichia coli MG4/pKDT17, E.coli pEAL08-2, and E.coli pDSY, respectively. Real–time RT-PCR assays showed that equisetin could downregulate the mRNA expression of QS-related genes.

Conclusions

Equisetin proved its potential as an inhibitor against P. aeruginosa QS system and might also serve as precursor compound in development of novel therapeutics for infectious diseases by optimal design of structures.
  相似文献   

5.
The opportunistic pathogen Pseudomonas aeruginosa causes chronic respiratory infections in patients with cystic fibrosis (CF). Persistence of this bacterium is attributed to its ability to form biofilms which rely on an extracellular polymeric substance matrix. Extracellular polysaccharides (EPS) and secreted proteins are key matrix components of P. aeruginosa biofilms. Recently, nebulized magnesium sulfate has been reported as a significant bronchodilator for asthmatic patients including CF. However, the impact of magnesium sulfate on the virulence effect of P. aeruginosa is lacking. In this report, we investigated the influence of magnesium sulfate and other environmental factors on the synthesis of alginate and secretion of proteins by a mucoid and a non-mucoid strain of P. aeruginosa, respectively. By applying the Plackett-Burman and Box-Behnken experimental designs, we found that phosphates (6.0 g/l), ammonium sulfate (4.0 g/l), and trace elements (0.6 mg/l) markedly supported alginate production by the mucoid strain. However, ferrous sulfate (0.3 mg/l), magnesium sulfate (0.02 g/l), and phosphates (6.0 g/l) reinforced the secretion of proteins by the non-mucoid strain.  相似文献   

6.
Pseudomonas aeruginosa, a Gram-negative, rod-shaped bacterium causes widespread diseases in humans. This bacterium is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteriaemia especially in immunocompromised patients. The current review focuses on the recent perspectives on biofilms formation by these bacteria. Biofilms are communities of microorganisms in which cells stick to each other and often adhere to a surface. These adherent cells are usually embedded within a self-produced matrix of extracellular polymeric substance (EPS). Pel, psl and alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell surface interactions during biofilm formation. Recent studies suggested that cAMP signalling pathway, quorum-sensing pathway, Gac/Rsm pathway and c-di-GMP signalling pathway are the main mechanism that leads to the biofilm formation. Understanding the bacterial virulence depends on a number of cell-associated and extracellular factors and is very essential for the development of potential drug targets. Thus, the review focuses on the major genes involved in the biofilm formation, the state of art update on the biofilm treatment and the dispersal approaches such as targeting adhesion and maturation, targeting virulence factors and other strategies such as small molecule-based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides and natural therapies and vaccines to curtail the biofilm formation by P. aeruginosa.  相似文献   

7.
The emergence of antibiotic-resistant and food-spoilage microorganisms has renewed efforts to identify safe and natural alternative agents of antibiotics such as probiotics. The aim of this study was the isolation of lactobacilli as potential probiotics from local dairy products with broad antibacterial and anti-biofilm activities against antibiotic-resistant strains of Pseudomonas aeruginosa and determination of their inhibition mechanism. Antibiotic susceptibility and classification of acquired resistance profiles of 80 P. aeruginosa strains were determined based on Centers for Disease Control and Prevention (CDC) new definition as multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) followed by antibacterial assessment of lactobacilli against them by different methods. Among the 80 P. aeruginosa strains, 1 (1.3%), 50 (62.5%), and 78 (97.5%) were PDR, XDR, and MDR, respectively, and effective antibiotics against them were fosfomycin and polymyxins. Among 57 isolated lactobacillus strains, two strains which were identified as Lactobacillus fermentum using biochemical and 16S rDNA methods showed broad inhibition/killing and anti-biofilm effects against all P. aeruginosa strains. They formed strong biofilms and had bile salts and low pH tolerance. Although investigation of inhibition mechanism of these strains showed no bacteriocin production, results obtained by high-performance liquid chromatography (HPLC) analysis indicated that their inhibitory effect was the result of production of three main organic acids including lactic acid, acetic acid, and formic acid. Considering the broad activity of these two L. fermentum strains, they can potentially be used in bio-control of drug-resistant strains of P. aeruginosa.  相似文献   

8.
9.
10.
Microorganisms develop biofilms on indwelling medical devices and are associated with biofilm-related infections, resulting in substantial morbidity and mortality. Therefore, to prevent and control biofilm-associated infections, the present study was designed to assess the anti-biofilm potential of postbiotics derived from probiotic organisms against most prevalent biofilm-forming Pseudomonas aeruginosa PAO1. Eighty lactic acid bacteria isolated from eight neonatal fecal samples possessed antibacterial activity against P. aeruginosa PAO1. Among these, only four lactic acid bacteria produced both bacteriocin and exopolysaccharides but only one isolate was found to maximally attenuate the P. aeruginosa PAO1 biofilm. More specifically, the phenotypic and probiotic characterization showed that the isolated lactic acid bacteria were gram positive, non-motile, and catalase and oxidase negative; tolerated acidic and alkaline pH; has bile salt concentration; showed 53% hydrophobicity; and was found to be non-hemolytic. Phylogenetically, the organism was found to be probiotic Lactobacillus fermentum with accession no. KT998657. Interestingly, pre-coating of a microtiter plate either with bacteriocin or with exopolysaccharides as well as their combination significantly (p < 0.05) reduced the number of viable cells forming biofilms to 41.7% compared with simultaneous coating of postbiotics that had 72.4% biofilm-forming viable cells as observed by flow cytometry and confocal laser scanning microscopy. Therefore, it can be anticipated that postbiotics as the natural biointerventions can be employed as the prophylactic agents for medical devices used to treat gastrointestinal and urinary tract infections.  相似文献   

11.
12.
Microcystis blooms can lead to a decline in water quality and ecological damage, and pose risks to human health. Therefore, studies on the mechanisms of Microcystis colony formation and bloom occurrence are of great significance for the aquatic ecosystem. In this study, Microcystis aeruginosa was cultured with nitrate, ammonium, or urea as the nitrogen source in the medium to investigate the effects of nitrogen forms on colony formation. Nitrogen was added as a single dose or in multiple doses to determine the effect of the nitrogen supply modes on colony formation. Compared with urea, nitrate significantly stimulated the growth of M. aeruginosa while ammonium inhibited growth. Among the three nitrogen forms, ammonium resulted in the highest concentrations of total dissolved nitrogen (TDN). Colonies larger than 10 μm were significantly promoted in the ammonium treatment. Cells were generally smaller in the nitrate treatment than in the ammonium and urea treatments. The extracellular polysaccharide (EPS) contents were lower in the nitrate and urea treatments than in the ammonium treatments. Within the same nitrogen form, there was little difference in growth and colony formation between the single-dose and multiple-dose treatments. Our results demonstrated that ammonium significantly promoted M. aeruginosa colony formation, and that the nitrogen supply mode did not affect colony formation in M. aeruginosa.  相似文献   

13.

Background

The emergence of antibiotic-resistant bacteria can cause serious clinical and public health problems. This study describes the possibility of using bacteriophages as an alternative agent to control multidrug-resistant Salmonella Typhimurium.

Methods

The potential lytic bacteriophages (P22-B1, P22, PBST10, PBST13, PBST32, and PBST 35) were characterized by morphological property, heat and pH stability, optimum multiplicity of infection (MOI), and lytic activity against S. Typhimurium KCCM 40253, S. Typhimurium ATCC 19585, ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and S. Typhimurium CCARM 8009.

Results

P22-B1 and P22 belong to Podoviridae family and PBST10, PBST13, PBST32, and PBST 35 show a typical structure with polyhedral head and long tail, belonging to Siphoviridae family. Salmonella bacteriophages were highly stable at the temperatures (< 60 °C) and pHs (5.0–11.0). The reduction rates of host cells were increased at the MOI-dependent manner, showing the highest reduction rate at MOI of 10. The host cells were most effectively reduced by P22, while P22-B1 showed the least lytic activity. The ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585, and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 were resistant to ciprofloxacin, levofloxacin, norfloxacin, and tetracycline. P22 showed the highest lytic activity against S. Typhimurium KCCM 40253 (> 5 log reduction), followed by S. Typhimurium ATCC 19585 (4 log reduction) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium ATCC 19585 (4 log reduction).

Conclusion

The results would provide vital insights into the application of lytic bacteriophages as an alternative therapeutics for the control of multidrug-resistant pathogens.
  相似文献   

14.

Introduction

Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients.

Methods

A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production.

Results

Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin.

Conclusion

In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.
  相似文献   

15.
Pseudomonas aeruginosa, an opportunistic human pathogen, causes many biofilm-mediated chronic infections. In this study, biofilm structures of various clinical strains of P. aeruginosa isolated from hospitalized patients were examined and their influence on the biofilm-dispersing effects of chemicals was investigated. The clinical isolates formed structurally distinct biofilms that could be classified into three different groups: 1) mushroom-like, 2) thin flat, and 3) thick flat structures. A dispersion of these differently structured biofilms was induced using two biofilm-dispersing agents, anthranilate and sodium nitroprusside (SNP). Although both SNP and anthranilate could disperse all types of biofilms, the thick flat biofilms were dispersed less efficiently than the biofilms of other structures. This suggests that biofilm-dispersing agents have higher potency on the biofilms of porous structures than on densely packed biofilms.  相似文献   

16.
Expression of a putative acyltransferase encoded by NCgl- 0350 of Corynebacterium glutamicum is induced by cell-free culture fluids obtained from stationary-phase growth of both C. glutamicum and Pseudomonas aeruginosa, providing evidence for interspecies communication. Here, we further confirmed that such communication occurs by showing that acyltransferase expression is induced by culture fluid obtained from diverse Gram-negative and -positive bacterial strains, including Escherichia coli, Salmonella Typhimurium, Bacillus subtilis, Staphylococcus aureus, Mycobacterium sp. strain JC1, and Mycobacterium smegmatis. A homologous acyltransferase encoded by PA5238 of P. aeruginosa was also induced by fluids obtained from P. aeruginosa as well as other bacterial strains, as observed for NCgl0350 of C. glutamicum. Because C. glutamicum is difficult to study using molecular approaches, the homologous gene PA5238 of P. aeruginosa was used to identify PA5309 as an upstream regulator of expression. A homologous D-amino acid dehydrogenase encoded by NCgl- 2909 of C. glutamicum was cloned based on amino acid similarity to PA5309, and its role in the regulation of NCgl0350 expression was confirmed. Moreover, NCgl2909 played positive roles in growth of C. glutamicum. Thus, we identified a D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in C. glutamicum.  相似文献   

17.
Microbial adhesion to surfaces and the subsequent biofilm formation may result in contamination in food industry and in healthcare-associated infections and may significantly affect postoperative care. Some plants produce substances with antioxidant and antimicrobial properties that are able to inhibit the growth of food-borne pathogens. The aim of our study was to evaluate antimicrobial and anti-biofilm effect of baicalein, resveratrol, and pterostilbene on Candida albicans, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. We determined the minimum inhibitory concentrations (MIC), the minimum adhesion inhibitory concentration (MAIC), and the minimum biofilm eradication concentration (MBEC) by crystal violet and XTT determination. Resveratrol and pterostilbene have been shown to inhibit the formation of biofilms as well as to disrupt preformed biofilms. Our results suggest that resveratrol and pterostilbene appear potentially very useful to control and inhibit biofilm contaminations by Candida albicans, Staphylococcus epidermidis, and Escherichia coli in the food industry.  相似文献   

18.
Periodontitis is a polymicrobial disease inciting inflammatory destruction of the tooth-supporting tissues, i.e., periodontium. The initiation of this infectious disease is ascribed to the formation of subgingival biofilms. These biofilms cause stimulation of myriad of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobe Porphyromonas gingivalis is commonly found as part of the microbiota of subgingival biofilms, and is involved in the occurrence of the disease. P. gingivalis possesses numerous virulence factors supporting its survival, regulating its communication with other species in the biofilm, degrading host tissues. Fusobacterium nucleatum is pivotal for formation of biofilm and promotes growth and invasion properties of P. gingivalis. Bestatin is an aminopeptide inhibitor, produced by actinomycetes. It possesses antibacterial properties against P. gingivalis and F. nucleatum. The following review focuses on action of bestatin on the mentioned bacteria.  相似文献   

19.
Infections are often not caused by a colonization of Pseudomonas aeruginosa alone but by a consortium of other bacteria. Little is known about the impact of P. aeruginosa on the growth of other bacteria upon coinfection. Here, cellree culture supernatants obtained from P. aeruginosa suppressed the growth of a number of bacterial strains such as Corynebacterium glutamicum, Bacillus subtilis, Staphylococcus aureus, and Agrobacterium tumefaciens, but had little effect on the growth of Escherichia coli and Salmonella Typhimurium. The growth suppression effect was obvious when P. aeruginosa was cultivated in M9 minimal media, and the suppression was not due to pyocyanin, a well-known antimicrobial toxin secreted by P. aeruginosa. By performing transposon mutagenesis, PA5070 encoding TatC was identified, and the culture supernatant of its mutant did not suppress the growth. HPLC analysis of supernatants showed that pyoverdine was a secondary metabolite present in culture supernatants of the wild-type strain, but not in those of the PA5070 mutant. Supplementation of FeCl2 as a source of iron compromised the growth suppression effect of supernatants and also recovered biofilm formation of S. aureus, indicating that pyoverdine-mediated iron acquisition is responsible for the growth suppression. Thus, this study provides the action of TatC-dependent pyoverdine translocation for the growth suppression of other bacteria, and it might aid understanding of the impact of P. aeruginosa in the complex community of bacterial species upon coinfection.  相似文献   

20.
This study isolated extracellular polysaccharides (EPS) as a powder material from cyanobacterial blooms and the powdered EPS was used to trigger colony formation of dispersed unicellular M. aeruginosa by controlling EPS concentration in culture medium. The effect of Ca2+ ions on the colony formation of M. aeruginosa was also investigated, then the interaction between EPS and Ca2+ ions on colony formation was discussed. The results showed that the addition of the powdered EPS into the medium did not cause morphological changes of M. aeruginosa, suggesting that EPS alone would not induce the colony formation of M. aeruginosa. On the other hand, a high concentration of calcium ions (1000 mg/l) caused colony formation. When EPS and Ca2+ ions in the culture medium were adjusted to 200 and 1000 mg/l, respectively, the colony density, the average cell number per colony and the particle size of M. aeruginosa showed ca. 1.7–2.0 times greater values than those in the Ca2+ added medium. Calcium ion contributed to the aggregation of M. aeruginosa via crosslinked reaction with negatively charged M. aeruginosa cells, and the addition of EPS possessing negatively charged functional groups such as carboxy groups could enhance the reaction, promoting the crosslinked reaction between EPS and Ca2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号