首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the aerobic methanotrophic bacteria Methylomicrobium alcaliphilum 20Z, Methylococcus capsulatus Bath, and Methylosinus trichosporium OB3b, the biochemical properties of hydroxypyruvate reductase (Hpr), an indicator enzyme of the serine pathway for assimilation of reduced C1-compounds, were comparatively analyzed. The recombinant Hpr obtained by cloning and heterologous expression of the hpr gene in Escherichia coli catalyzed NAD(P)H-dependent reduction of hydroxypyruvate or glyoxylate, but did not catalyze the reverse reactions of D-glycerate or glycolate oxidation. The absence of the glycerate dehydrogenase activity in the methanotrophic Hpr confirmed a key role of the enzyme in utilization of C1-compounds via the serine cycle. The enzyme from Ms. trichosporium OB3b realizing the serine cycle as a sole assimilation pathway had much higher special activity and affinity in comparison to Hpr from Mm. alcaliphilum 20Z and Mc. capsulatus Bath assimilating carbon predominantly via the ribulose monophosphate (RuMP) cycle. The hpr gene was found as part of gene clusters coding the serine cycle enzymes in all sequenced methanotrophic genomes except the representatives of the Verrucomicrobia phylum. Phylogenetic analyses revealed two types of Hpr: (i) Hpr of methanotrophs belonging to the Gammaproteobacteria class, which use the serine cycle along with the RuMP cycle, as well as of non-methylotrophic bacteria belonging to the Alphaproteobacteria class; (ii) Hpr of methylotrophs from Alpha- and Betaproteobacteria classes that use only the serine cycle and of non-methylotrophic representatives of Betaproteobacteria. The putative role and origin of hydroxypyruvate reductase in methanotrophs are discussed.  相似文献   

2.
Aerobic bacteria utilizing methane as the carbon and energy source do not use sugars as growth substrates but possess the gene coding for glucokinase (Glk), an enzyme converting glucose into glucose 6-phosphate. Here we demonstrate the functionality and properties of Glk from an obligate methanotroph Methylomicrobium alcaliphilum 20Z. The recombinant Glk obtained by heterologous expression in Escherichia coli was found to be close in biochemical properties to other prokaryotic Glks. The homodimeric enzyme (2 × 35 kDa) catalyzed ATP-dependent phosphorylation of glucose and glucosamine with nearly equal activity, being inhibited by ADP (K i = 2.34 mM) but not affected by glucose 6-phosphate. Chromosomal deletion of the glk gene resulted in a loss of Glk activity and retardation of growth as well as in a decrease of intracellular glycogen content. Inactivation of the genes encoding sucrose phosphate synthase or amylosucrase, the enzymes involved in glycogen biosynthesis via sucrose as intermediate, did not prevent glycogen accumulation. In silico analysis revealed glk orthologs predominantly in methanotrophs harboring glycogen synthase genes. The data obtained suggested that Glk is implicated in the regulation of glycogen biosynthesis/degradation in an obligate methanotroph.  相似文献   

3.
4.

Objectives

To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis.

Results

An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the ?35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and d-aminoacylase, compared with the P hpaII system.

Conclusions

A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.
  相似文献   

5.
A third generation promoter probe shuttle vector pKG was constructed, using the green fluorescent protein as a reporter, for in situ evaluation of Deinococcal promoter activity in Escherichia coli or Deinococcus radiodurans. The construct yielded zero background fluorescence in both the organisms, in the absence of promoter sequences. Fifteen Deinococcal promoters, either harbouring Radiation and Desiccation Response Motif (RDRM) or not, were cloned in vector pKG. Only the RDRM-promoter constructs displayed (i) gamma radiation inducible GFP expression in D. radiodurans, following gamma irradiation, (ii) DdrO-mediated repression of GFP expression in heterologous E. coli, or (iii) abolition in GFP induction following gamma irradiation, in pprI mutant of D. radiodurans. Utility of pKG vector for real-time in situ assessment of Deinococcal promoter function was, thus, successfully demonstrated.  相似文献   

6.
Identification and characterization of plant promoters from wild rice genotypes showing inducible expression under soil water stress (SWS) is desirable for transgene expression to generate stress tolerant rice cultivars. A comparative expression profiling of Wsi18, a group 3 LEA gene, revealed differential response under SWS conditions between modern cultivated rice (IR20) and its wild progenitor (Oryza nivara). Wsi18 promoter from O. nivara showed enhanced inducible expression of the reporter gusA gene, encoding β-glucuronidase, in transgenic rice plants in comparison to similar promoter from IR20. Deletion analysis unravelled the cis-acting regulatory elements minimally required for optimal expression of Wsi18 promoter from O. nivara under SWS condition. This is the first report of characterization of an inducible promoter from a wild rice genotype to drive the gene expression under water stress conditions. The Wsi18 promoter element from the wild rice genotype can be used in future genetic manipulation strategies for the generation of SWS tolerant rice cultivars with improved yield characteristics.  相似文献   

7.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

8.
9.
10.
Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted “one-round PCR product.” Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.  相似文献   

11.
12.
Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.  相似文献   

13.
14.
Cereal grains offer great potential as a storage system for production of highly valuable proteins using biotechnological approaches, but such applications require tight temporal and spatial control of transgene expression. Towards this aim, we have undertaken a detailed analysis of α-kafirin (α-kaf) promoter and α-kaf signal peptide (sp) in transgenic sorghum plants, using green fluorescent protein gene (gfp) as a reporter. Constructs containing either the α-kaf promoter or the constitutive maize ubiquitin-1 (ubi) promoter driving either gfp or sp-gfp translational fusion were introduced into Sorghum bicolor inbred line Tx430 by particle bombardment. We show for the first time that the α-kaf promoter directs endosperm-specific transgene expression, with activity first detected at 10 days post-anthesis (dpa), peaking at 20 dpa, and remaining active through to physiological maturity. Furthermore, we demonstrate for the first time that the α-kafirin sp is sufficient to direct foreign protein to protein bodies in the endosperm. The evidence is also provided for possible mis-targeting by α-kaf sp in vegetative tissues of transgenic lines with ubi-sp-gfp, resulting in loss of reporter gene translational activity that no GFP signal was observed. These results demonstrate that α-kaf promoter and α-kaf sp are well suited for seed bioengineering to produce recombinant proteins in sorghum endosperm or deposit foreign proteins into sorghum protein bodies.  相似文献   

15.
16.
17.
Cryptic promoter elements play a significant role in evolution of plant gene expression patterns and are prospective tools for creating gene expression systems in plants. In a previous report, a 452 bp promoter fragment designated as cryptic root-specific promoter (AY601849) was identified immediately upstream to T-DNA insertion, in the intergenic region between divergent genes SAHH1 and SHMT4, in T-DNA tagged mutant M57 of Arabidopsis thaliana. In silico analysis of 452 bp promoter revealed typical eukaryotic promoter architecture, presence of root-specific motifs and other cis-regulatory motifs responsible for the spatial and temporal expression. GUS expression driven by 452 bp in M57 was developmentally as well as light-regulated. The AT-rich 452 bp promoter does not show homology to any known sequences. The 452 bp promoter was further proved cryptic and detailed molecular characterization of the promoter carried out through serial 5′ and 3′ deletion analysis, by cloning the promoter fragments upstream to promoter-less GUS vector. A 279 bp fragment obtained by deleting 173 bp from 5′ end of 452 bp was capable of driving root-specific expression, similar to that of full-length promoter. Further, root tip-specific, root-specific and core-regulatory motifs for root-specific expression were identified at positions 173–227, 251–323 and 408–452 bp, respectively, from the 5′ end of 452 bp. The 452 bp promoter was equally functional in inverse orientation, hence bidirectional and symmetric. In heterologous systems, such as Brassica juncea and Oryza sativa, the promoter activity was not significant since GUS was not visually detected in transient assays.  相似文献   

18.
Anthocyanins play important role in plant protection and were closely involved with the plant evolution. Anthocyanidin synthase (ANS) is a late key enzyme in the flavonoid pathway which can catalyze leucoanthocyanidins to anthocyanidins. By our study, we found a miniature inverted-repeat transposable element (MITE) inserting in the promoter of ANS gene of mulberry. We used strawberry to evaluate the activities of ANS promoters from Morus alba and Morus notabilis with the method of Agrobacterium-mediated transient expression. The expression patterns of different promoters were also analyzed in transgenic lines of Arabidopsis thaliana and in this study, GUS was used as reporter gene. The 564-bp MITE insertion was strongly required for the activities of ANS promoter and it may reprogram the expression profiles of ANS gene in mulberry. Our results suggested that the MITE insertion was probably involved in either domestication or natural selection.  相似文献   

19.
20.
l-tryptophan (l-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient l-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the l-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroG fbr ). To further improve the production of l-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of l-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号