首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemotaxis is a process in which bacteria sense their chemical environment and move towards more favorable conditions. Since plant colonization by bacteria is a multifaceted process which requires a response to the complex chemical environment, a finely tuned and sensitive chemotaxis system is needed. Members of the Bacillus subtilis group including Bacillus amyloliquefaciens are industrially important, for example, as bio-pesticides. The group exhibits plant growth-promoting characteristics, with different specificity towards certain host plants. Therefore, we hypothesize that while the principal molecular mechanisms of bacterial chemotaxis may be conserved, the bacterial chemotaxis system may need an evolutionary tweaking to adapt it to specific requirements, particularly in the process of evolution of free-living soil organisms, towards plant colonization behaviour. To date, almost nothing is known about what parts of the chemotaxis proteins are subjected to positive amino acid substitutions, involved in adjusting the chemotaxis system of bacteria during speciation. In this novel study, positively selected and purified sites of chemotaxis proteins were calculated, and these residues were mapped onto homology models that were built for the chemotaxis proteins, in an attempt to understand the spatial evolution of the chemotaxis proteins. Various positively selected amino acids were identified in semi-conserved regions of the proteins away from the known active sites.  相似文献   

2.
3.

Objectives

To induce natural genetic competence in Bacillus amyloliquefaciens isolates through overexpression of the master regulator, ComK, from B. subtilis (ComK Bsu ).

Results

Plasmid pUBXC carrying the xylose-inducible comK expression cassette was constructed using plasmid pUB110 as a backbone. Plasmid pUBXC could be transferred from B. subtilis to B. amyloliquefaciens through plasmid pLS20-mediated biparental conjugation. After being induced by xylose, four B. amyloliquefaciens strains harbouring plasmid pUBXC developed genetic competence. Under optimal conditions, the transformation efficiencies of plasmid DNA ranged from 129 ± 20.6 to 1.7 ± 0.1 × 105 cfu (colony-forming units) per μg DNA, and the transformation efficiencies of PCR-assembled deletion constructs ranged from 3.2 ± 0.76 to 3.5 ± 0.42 × 104 cfu per μg DNA in the four tested strains.

Conclusion

Artificial induction of genetic competence through overexpressing ComK Bsu in B. amyloliquefaciens completed the tasks of replicative plasmid delivery and gene knockout via direct transformation of PCR-generated deletion cassettes.
  相似文献   

4.
The present study was performed to evaluate the antibacterial activities of an antimicrobial peptide (CSpK14) and the synergies thereof with β-lactams against vancomycin-resistant Staphylococcus aureus (VRSA) and Enterococci (VRE). Our strain was isolated from fermented food (kimchi), which is 99.79 % homologous with Bacillus amyloliquefaciens subsp. plantarum FZB42(T). CSpK14 was purified to homogeneity by diammonium sulfate precipitation, concentration, dialysis, and followed by two-stage chromatographic separation, i.e., Sepharose Cl-6B and Sephadex G-25 chromatography, and had a molar mass of ~4.6 kDa via Tricine SDS-PAGE and in situ examination. It was stable at pH 6.0–11.5 and temperature up to 80 °C. In addition, it was also stable with various metal ions, solvents, and proteases. The N-terminal amino acid sequence was H-Y-D-P-G-D-D-S-G-N-T-G and did not show any significant homology with reported peptides. However, it shows some degrees of identity with alpha-2-macroglobulin and ligand-gated channel protein from different microorganisms. CSpK14 significantly reduced the minimum inhibitory concentrations (MICs) of β-lactams and had no effect on non-β-lactams against VRSA and VRE. MICs of CSpK14/oxacillin and CSpK14/ampicillin were reduced by 8- to 64-fold and 2- to 16-fold, respectively. The time killing assay between CSpK14/oxacillin (2.29–2.37 Δlog10CFU/mL at 24 h) and CSpK14/ampicillin (2.30–2.38 Δlog10CFU/mL at 24 h) being >2-fold and fractional inhibitory concentration index ?0.5 revealed synergy. Furthermore, the biofilms formed by VRSA and VRE were reduced completely. CSpK14 was simple to purify, had low molecular mass, was stable over a wide pH range or tested chemicals, had broad inhibitory spectrum, and possessed potent synergistic antimicrobial-antibiofilm properties. CSpK14 synergistically enhanced the efficacy of β-lactams and is therefore suitable for combination therapy.  相似文献   

5.
An AHL lactonase gene (aiiA) was PCR amplified from the genomic DNA of Bacillus amyloliquefaciens, with the intact open reading frame of 753 base pair. The gene shares high identity to its homologues present in different Bacillus species. The expression plasmid carrying a tact aiiA-PEBA gene was constructed and the gene was overproduced in Escherichia coli BL21 (DE3). The product expressed resulted in attenuation and suspension of the infection of Pectobacterium carotovorum subsp. carotovorum on carrot. This study verified the existence of the aiiA gene in B. amyloliquefaciens and provided a prospect of the strain as biocontrol agents with quorum quenching property on bacterial disease control.  相似文献   

6.
Bacillus amyloliquefaciens LBM 5006 produces an antimicrobial factor active against Paenibacillus larvae, a major honeybee pathogen. The antagonistic effect and the mode of action of the antimicrobial factor were investigated. The antibacterial activity was produced starting at mid-logarithmic growth phase, reaching its maximum during the stationary phase. Exposure of cell suspensions of P. larvae to this antimicrobial resulted in loss of cell viability and reduction in optical density associated with cell lysis. Scanning electron microscopy showed damaged cell envelope and loss of protoplasmic material. The antimicrobial factor was stable for up to 80°C, but it was sensitive to proteinase K and trypsin. Mass spectrometry analysis indicates that the antimicrobial activity is associated with iturin-like peptides. The antimicrobial factor from B. amyloliquefaciens LBM 5006 showed a bactericidal effect against P. larvae cells and spores. This is the first report on iturin activity against P. larvae. This antimicrobial presents potential for use in the control of American foulbrood disease.  相似文献   

7.
The production of excited xenon iodides and iodine dimers in the plasma of a longitudinal dc glow discharge is investigated. The discharge was ignited in iodine vapor and Xe/I2 mixtures at xenon pressures of P(Xe)=0.1–1.5 kPa and deposited powers of 10–100 W. The current-voltage characteristics of a glow discharge, the plasma emission spectra in the spectral range of 200–650 nm, and the intensities of spectral lines and molecular bands are studied as functions of the deposited power and the xenon partial pressure in a Xe/I2 mixture. It is found that the discharge plasma emits within the spectral range of 206–343 nm, which includes the 206-nm resonant line of atomic iodine and the XeI(B-X) 253-nm and I2(B-X) 343-nm molecular bands. The power deposited in the plasma and the xenon pressure P(Xe) are optimized to achieve the maximum UV emission intensity. The 7-W total UV power emitted from the entire surface of the cylindrical discharge tube is achieved with an efficiency of ≤5%.  相似文献   

8.

Background

Bacillus spp. have prominent ability to suppress plant pathogens and corresponding diseases. Previous analyses of Bacillus spp. revealed numerous gene clusters involved in nonribosomal synthesis of cyclic lipopeptides with distinct antimicrobial action. The 4′-phosphopantetheinyl transferase (PPTase) encoded by sfp gene is a key factor in lipopeptide synthesis in Bacillus spp. In previous study, B. amyloliquefaciens strain HAB-2 was found to inhibit a broad range of plant pathogens, which was attributed to its secondary metabolite lipopeptide.

Results

A sfp homologue lpaH2 which encoded phosphopantetheinyl transferase but shared 71% sequence similarity was detected in strain HAB-2. Disruption of lpaH2 gene resulted in losing the ability of strain HAB-2 to produce lipopeptide, as well as antifungal and hemolytic activities. When lpaH2 replaced sfp gene of B. subtilis strain 168, a non-lipopeptide producer, the genetically engineered strain 168 could produced lipopeptides and recovered antifungal activity. Quantitative PCR assays indicated that, the expression level of lpaH2 in B. subtilis 168 strain decrease to 0.27-fold compared that of the wild type B. amyloliquefaciens strain HAB-2.

Conclusion

Few studies have reported about lpa gene which can replace sfp gene in the different species. Taken together, our study showed for the first time that lpaH2 from B. amyloliquefaciens could replace sfp gene.
  相似文献   

9.
Cytochrome c 6 , (cyt c 6) a soluble monoheme electron transport protein, was isolated and characterized from the chlorophyll d-containing cyanobacterium Acaryochoris marina, the type strain MBIC11017. The protein was purified using ammonium sulfate precipitation, ion exchange and gel filtration column chromatography, and fast performance liquid chromatography. Its molecular mass and pI have been determined to be 8.87 kDa and less than 4.2, respectively, by mass spectrometry and isoelectrofocusing (IEF). The protein has an alpha helical structure as indicated by CD (circular dichroism) spectroscopy and a reduction midpoint potential (E m) of +327 mV versus the normal hydrogen electrode (NHE) as determined by redox potentiometry. Its potential role in electron transfer processes is discussed.  相似文献   

10.
Biofilm formation can make significant effects on bacteria habits and biological functions. In this study, diketopiperazines (DKPs) produced by strain of Bacillus amyloliquefaciens Q-426 was found to inhibit biofilm formed in the gas–liquid interface. Four kinds of DKPs were extracted from B. amyloliquefaciens Q-426, and we found that 0.04 mg ml?1 DKPs could obviously inhibit the biofilm formation of the strain. DKPs produced by B. amyloliquefaciens Q-426 made a reduction on extracellular polymeric substance (EPS) components, polysaccharides, proteins, DNAs, etc. Real-time PCR was performed to determine that whether DKPs could make an obvious effect on the expression level for genes related to biofilm formation in the strain. The relative expression level of genes tasA, epsH, epsG and remB which related to proteins, extracellular matrix, and polysaccharides, were downregulated with 0.04 mg ml?1 DKPs, while the expression level of nuclease gene nuc was significantly upregulated. The quantitative results of the mRNA expression level for these genes concerted with the quantitative results on EPS levels. All of the experimental results ultimately indicated that DKPs could inhibit the biofilm formation of the strain B. amyloliquefaciens Q-426.  相似文献   

11.
Fungicidic Bacillus amyloliquefaciens strains isolated from the indoor environment of moisture-damaged buildings contained heat-stable, methanol-soluble substances that inhibited motility of boar spermatozoa within 15 min of exposure and killed feline lung cells in high dilution in 1 day. Boar sperm cells lost motility, cellular ATP, and NADH upon contact to the bacterial extract (0.2 g dry wt/ml). Two bioactive substances were purified from biomass of the fungicidal isolates. One partially characterized substance, 1,197 Da, was moderately hydrophobic and contained leucine, proline, serine, aspartic acid, glutamic acid and tyrosine, in addition to chromophore(s) absorbing at 365 nm. In boar sperm and human neural cells (Paju), the compound depolarized the transmembrane potentials of mitochondria (m) and the plasma membrane (p) after a 20-min exposure and formed cation-selective channels in lipid membranes, with a selectivity K+:Na+:Ca2+ of 26:15:3.5. The other substance was identified as a plasma-membrane-damaging lipopeptide surfactin. Plate-grown biomass of indoor Bacillus amyloliquefaciens contained ca. 7% of dry weight of the two substances, 1,197 Da and surfactin, in a ratio of 1:6 (w:w). The in vitro observed simultaneous collapse of both cytosolic and mitochondrial ATP in the affected mammalian cell, induced by the 1,197-Da cation channel, suggests potential health risks for occupants of buildings contaminated with such toxins.Abbreviations RP-HPLC Reversed-phase high-performance liquid chromatography - BLM Black lipid membrane - DAD Diode-array detector - m Mitochondrial membrane potential - p Plasma membrane potential - JC-1 5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenz-imidazolo carbocyanine iodide - AM Calcein acetoxymethyl ester - PI Propidium iodide - MALDI-TOF-MS Matrix-assisted laser desorption ionization time-of-flight mass spectrometry - ESI-IT-MS Electrospray ionization ion trap mass spectrometry - EC50 Endpoint concentration which caused 50% change in the viability parameters - FCCP Carbonyl cyanide 4-trifluoromethoxyphenylhydrazone  相似文献   

12.
The cherry (Prunus avium), a self-incompatible diploid species, and the sour cherry (Prunus cerasus), a self-incompatible or self-compatible allotetraploid species derived from P. avium and Prunus fruticosa, share several S-RNase alleles, including S 13 . An inactive form, S 13 °, is found in some sour cherries. Two (AT) microsatellites are associated with allele S 13 -RNase, one in the first intron and one in the second. Their length polymorphisms were studied in 14 sweet and 17 wild cherries (both P. avium) and in 42 sour cherries. Fluorescent primers amplifying each microsatellite were designed and amplification products sized on an automated sequencer. Variants ranged from 247 to 273 bp for the first intron microsatellite and from 308 to 322 bp for the second. There were 34 combinations and, surprisingly, the lengths of the two microsatellites were correlated. Generally, the sweet, wild and sour cherries had different combinations, and the four examples of S 13 °-RNase were associated with three different combinations. Certain sequences associated with the microsatellites match footprints of transposons. The distribution of combinations indicated little overlap between the three populations analysed and provided useful insights into relationships of some of the accessions allowing some parentages to be checked. In the diploid sweet and wild cherries, S 13 variants presumably resulted from slippage during replication, but in the tetraploid sour cherries, which can have more than one copy of S 13 or S 13 °, intra-allelic crossing over may have generated new variants. The possible involvement of transposable elements in the origin of these microsatellites is considered.  相似文献   

13.
Apple (Malus domestica Borkh.) possesses gametophytic self-incompatibility (GSI) which is controlled by S-RNase in the pistil as well as a pollen S-determinant that has not been well characterized. The identification of S-locus F-box brother (SFBB) genes, which are good candidates for the pollen S-determinant in apple and pear, indicated the presence of multiple S-allelic polymorphic F-box genes at the S-locus. In apple, two SFBB gene groups have been described, while there are at least three groups in pear. In this report, we identified five MdSLFB (S-RNase-linked F-box) genes from four different S-genotypes of apple. These genes showed pollen- and S-allele-specific expression with a high polymorphism among S-alleles. The phylogenetic tree suggested that some of them belong to SFBBα or β groups as described previously, while others appear to be different from SFBBs. In particular, the presence of MdSLFB3 and MdSLFB9 suggested that there are more S-allelic polymorphic F-box gene groups in the S-locus besides α and β. Based on the sequence polymorphism of MdSLFBs, we developed an S-genotyping system for apple cultivars. In addition, we isolated twelve MdSLFB-like genes, which showed pollen-specific expression without S-allelic polymorphism.  相似文献   

14.
This study was conducted to elucidate cultivation conditions determining Bacillus amyloliquefaciens B-1895 growth and enhanced spore formation during the solid-state fermentation (SSF) of agro-industrial lignocellulosic biomasses. Among the tested growth substrates, corncobs provided the highest yield of spores (47?×?1010 spores g?1 biomass) while the mushroom spent substrate and sunflower oil mill appeared to be poor growth substrates for spore formation. Maximum spore yield (82?×?1010 spores g?1 biomass) was achieved when 15 g corncobs were moistened with 60 ml of the optimized nutrient medium containing 10 g peptone, 2 g KH2PO4, 1 g MgSO4·7H2O, and 1 g NaCl per 1 l of distilled water. The cheese whey usage for wetting of lignocellulosic substrate instead water promoted spore formation and increased the spore number to 105?×?1010 spores g?1. Addition to the cheese whey of optimized medium components favored sporulation process. The feasibility of developed medium and strategy was shown in scaled up SSF of corncobs in polypropylene bags since yield of 10?×?1011 spores per gram of dry biomass was achieved. In the SSF of lignocellulose, B. amyloliquefaciens B-1895 secreted comparatively high cellulase and xylanase activities to ensure good growth of the bacterial culture.  相似文献   

15.
16.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

17.
THE ribonuclease, barnase, produced by Bacillus amyloliquefaciens has a molecular weight of 12,382, consisting of 110 amino-acid residues. It is one of the smallest proteins containing neither disulphide bonds nor non-peptide cross-Bnks which nevertheless maintain a well defined tertiary structure1,2. The next smallest reported enzyme of similar nature is the lysozyme of phage T4, with 160 residues. The barnase structure is reversibly destroyed by denaturing solvents or heat2, in what approximates a one step, highly cooperative, transition. Studies of this reaction should be very useful in illustration approaching the general problem of sequence-determined folding in proteins. In particular, thermodynamically meaningful quantitative differences in the stability of various genetic variants and chemically modified, or synthetic, barnases could be measured. Some work has been reported on the effect of various environmental parameters on the transition3 as well as the effects of modification by carboxypeptidases4. Full utilization of such data requires knowledge of both amino-acid sequence and three dimensional structurs. The complete amino-acid sequence is reported here (Fig. 1). The sequence was obtained by conventional procedures involving analysis of peptides isolated after hydrolysis of the native or modified protein by various proteases.
  相似文献   

18.
Recombinant S-adenosylhomocysteine hydrolase from Corynebacterium glutamicum (CgSAHase) was covalently bound to Eupergit® C. The maximum yield of bound protein was 91% and the catalytic efficiency was 96.9%. When the kinetic results for the immobilized enzyme were compared with those for the soluble enzyme, no decrease in the catalytic efficiency of the former was detected. Both soluble and immobilized enzymes showed similar optimum pH and temperature ranges. The reuse of immobilized CgSAHase caused a loss of synthetic activity due to NAD+ release, although the binding to the support was sufficiently strong for up to 5 cycles with 95% conversion efficiency. The immobilized enzyme was incubated every 3 cycles with 100 μM NAD+ to recover the loss of activity after 5 cycles. This maintained the activity for another 50 cycles. The purification of S-adenosylhomocysteine (SAH) provided an overall yield of 76% and 98% purity as determined by HPLC and NMR analyses. The results indicate the suitability of immobilized CgSAHase for synthesizing SAH and other important S-nucleosidylhomocysteine.  相似文献   

19.
Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the -Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the -subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.  相似文献   

20.
Marine Glutathione <Emphasis Type="Italic">S</Emphasis>-Transferases   总被引:2,自引:0,他引:2  
The aquatic environment is generally affected by the presence of environmental xenobiotic compounds. One of the major xenobiotic detoxifying enzymes is glutathione S-transferase (GST), which belongs to a family of multifunctional enzymes involved in catalyzing nucleophilic attack of the sulfur atom of glutathione (γ-glutamyl-cysteinylglycine) to an electrophilic group on metabolic products or xenobiotic compounds. Because of the unique nature of the aquatic environment and the possible pollution therein, the biochemical evolution in terms of the nature of GSTs could by uniquely expressed. The full complement of GSTs has not been studied in marine organisms, as very few aquatic GSTs have been fully characterized. The focus of this article is to present an overview of the GST superfamily and their critical role in the survival of organisms in the marine environment, emphasizing the critical roles of GSTs in the detoxification of marine organisms and the unique characteristics of their GSTs compared to those from non-marine organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号