首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王敏  许金山  王林玲  张小燕  周泽扬 《遗传》2009,31(11):1121-1126
家蚕微孢子虫(Nosema bombycis)是蚕业生产上一种毁灭性病害—— 微粒子病的病原体。文章将安徽和重庆两地域来源的病原性家蚕微孢子虫分离株进行草地贪夜蛾Sf9细胞感染性检测, 结果显示二者对细胞的侵染能力存在显著差异。为进一步探讨不同家蚕微孢子虫分离株的种群多态性, 进行了孢子虫核糖体DNA序列的测定和系统聚类比较, 结果表明SSU rDNA(Small subunit ribosomal DNA)和ITS(Internal transcribed spacer)在不同地域的种群差异性并不显著。通过检索重庆株全基因组数据及其他地域株rDNA序列, 显示在家蚕微孢子虫rDNA元件的部分SSU rDNA结构复制子中存在MITE-like转座元件的插入, 表明家蚕微孢子虫rDNA结构的多样性。  相似文献   

2.
双壳贝类线粒体基因组结构的比较   总被引:4,自引:0,他引:4  
宋文涛  高祥刚  李云峰  刘卫东  刘莹  赫崇波 《遗传》2009,31(11):1127-1134
利用比较基因组学和生物信息学方法, 比较分析了已登录到GenBank中的14种海产双壳贝类和2种淡水双壳贝类的线粒体基因组的结构特征。结果发现, 双壳贝类线粒体的基因组结构、基因排列顺序均互不相同; 不同目、科和属之间线粒体基因组的大小、基因排列方式以及基因种类也存在明显的差异, 尤其是基因排列方式没有明显的规律。对16种双壳贝类的线粒体基因组全序列、编码基因序列进行系统分析, 分别得到了不同的聚类结果, 即用基因组全序列聚类时, 16种贝类的聚类结果与传统的形态学分类地位基本相同; 而将16种贝类的所有蛋白质编码基因和2个rRNA基因按照一致顺序排列起来进行聚类时, 所得的系统分类情况与这些贝类传统的形态学分类地位相差较大。  相似文献   

3.
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

4.
Odintsova MS  Iurina NP 《Genetika》2002,38(6):773-788
The data on the structure and functions of the mitochondrial genomes of protists (Protozoa and unicellular red and green algae) are reviewed. It is emphasized that mitochondrial gene structure and composition, as well as organization of mitochondrial genomes in protists are more diverse than in multicellular eukaryotes. The gene content of mitochondrial genomes of protists are closer to those of plants than animals or fungi. In the protist mitochondrial DNA, both the universal (as in higher plants) and modified (as in animals and fungi) genetic codes are used. In the overwhelming majority of cases, protist mitochondrial genomes code for the major and minor rRNA components, some tRNAs, and about 30 proteins of the respiratory chain and ribosomes. Based on comparison of the mitochondrial genomes of various protists, the origin and evolution of mitochondria are briefly discussed.  相似文献   

5.
Mitochondrial genomes are frequently used to infer phylogenetic relationships. Some taxa are, however, poorly represented. To facilitate better understanding of the potential of mitochondrial genome data in freshwater mussels, we present here, for the first time, the mitochondrial sequences of 4 complete F-type mitochondrial genomes from the European freshwater bivalveUnio pictorum (Unionidae). These genomes are very compact (15 761 bp) but have a typical gene complement for bilaterian mitochondrial genomes and a very similar organization to other unionid genomes available in databases. Very low nucleotide diversity within the species suggests a small effective population size of PolishU. pictorum, a phenomenon of potential importance for environmental management policies.  相似文献   

6.
Angiosperm mitochondrial genomes and mutations   总被引:1,自引:0,他引:1  
Flowering plants harbor the largest mitochondrial genomes reported so far. At present, the nucleotide sequences of 15 mitochondrial genomes from seven angiosperm species are available, making detailed comparative analysis feasible. The gene content is variable among the species, but the most striking feature is the fluidity of intergenic regions, where species-specific sequences predominate. Additionally, angiosperm mitochondrial genomes, even within a species, show a remarkable amount of rearrangement. We also review mitochondrial mutants in angiosperms from a genomic viewpoint, and discuss how they have arisen. The involvement of nuclear genes in mitochondrial genome stability and organization is currently being revealed through the analysis of mutants.  相似文献   

7.
Simple sequence repeats (SSRs) or microsatellites constitute a countable portion of genomes. However, the significance of SSRs in organelle genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the current study we surveyed the patterns of SSRs in mitochondrial genomes of different taxa of plants. A total of 16 mitochondrial genomes, from algae to angiosperms, have been considered to analyze the pattern of simple sequence repeats present in them. Based on study, the mononucleotide repeats of A/T were found to be more prevalent in mitochondrial genomes over other repeat types. The dinucleotides repeats, TA/AT, were the second most numerous, whereas tri-, tetra-, and pentanucleotide repeats were in less number and present in intronic or intergenic portions only. Mononucleotide repeats prevailed in protein-coding exonic portions of all organisms. These results indicates that microsatellite pattern in mitochondrial genomes is different from nuclear genomes and also focuses on organization and diversity at SSR locuses in mitochondrial genomes. This is the novel report of microsatellite polymorphism in plant mitochondrion on whole genome level.  相似文献   

8.
We have investigated the structure and organization of the mitochondrial genomes of two related orir (ori-rearranged) spontaneous petite mutants of Saccharomyces cerevisiae. In these mutant genomes every repeat unit contains an inverted terminal duplication harboring a second (inverted) ori sequence, and tandem pairs of repeat units alternate with tandem pairs in inverted orientation. We have shown that orir genomes are organized as the genomes with inverted repeat units of ethidium bromide (EtBr)-induced petites, and we have clarified the mechanism by which such mutant mitochondrial genomes arise.  相似文献   

9.
Current data on green algal mitochondrial genomes suggest an unexpected dichotomy within the group with respect to genome structure, organization, and sequence affiliations. The present study suggests that there is a correlation between this dichotomy on one hand and the differences in the abundance, base composition, and distribution of short repetitive sequences we observed among green algal mitochondrial genomes on the other. It is conceivable that the accumulation of GC- rich short repeated sequences in the Chlamydomonas-like but not Prototheca-like mitochondrial genomes might have triggered evolutionary events responsible for the distinct series of evolutionary changes undergone by the two green algal mitochondrial lineages. The similarity in base composition, nucleotide sequence, abundance, and mode of organization we observed between the short repetitive sequences present in Chlamydomonas-like mitochondrial genomes on one hand and fungal and vertebrate homologs on the other might extend to some of the roles that the short repetitive sequences have been shown to have in the latter. Potential involvements we propose for the short repetitive sequences in the evolution of Chlamydomonas-like mitochondrial genomes include fragmentation and scrambling of the ribosomal-RNA-coding regions, extensive gene rearrangements, coding-region deletions, surrogate origins of replication, and chromosomal linearization.   相似文献   

10.
11.
Contrasting modes and tempos of genome evolution in land plant organelles   总被引:23,自引:0,他引:23  
Despite inhabiting the same cell lineage for roughly a billion years and being dependent on the same nucleus for most of their gene products and genetic control, the two organelle genomes of land plants exhibit remarkably different tempos and patterns of evolutionary change. With a few notable exceptions, chloroplast genomes are highly conserved in size and gene arrangement, whereas mitochondrial genomes vary enormously in size and organization. Conversely, nucleotide substitution rates are on average several times higher in chloroplast DNA than in mitochondrial DNA. Mechanistic and selective forces underlying these differences are only poorly understood.  相似文献   

12.
Since the endosymbiont origin from α-Proteobacteria, mitochondrial genomes have undergone extremely divergent evolutionary trajectories among eukaryotic lineages. Compared with the relatively compact and conserved animal mitochondrial genomes, plant mitochondrial genomes have many unique features, especially their large and complex genomic arrangements. The sizes of fully sequenced plant mitochondrial genomes span over a 100-fold range from 66 kb in Viscum scurruloideum to 11 000 kb in Silene conica. In addition to the typical circular structure, some species of plants also possess linear, and even multichromosomal, architectures. In contrast with the thousands of fully sequenced animal mitochondrial genomes and plant plastid genomes, only around 200 fully sequenced land plant mitochondrial genomes have been published, with many being only draft assemblies. In this review, we summarize some of the known novel characteristics found in plant mitochondrial genomes, with special emphasis on multichromosomal structures described in recent publications. Finally, we discuss the future prospects for studying the inheritance patterns of multichromosomal plant mitochondria and examining architectural variation at different levels of taxonomic organization—including at the population level.  相似文献   

13.
14.
Simple Sequence Repeats (SSRs) or microsatellites constitute a significant portion of genomes however; their significance in organellar genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the present work, SSRs were identified and categorized in 14 mitochondrial and 22 chloroplast genomes of algal species belonging to Chlorophyta. Based on the study, it was observed that number of SSRs in non-coding region were more as compared to coding region and frequency of mononucleotides repeats were highest followed by dinucleotides in both mitochondrial and chloroplast genomes. It was also observed that maximum number of SSRs was found in genes encoding for beta subunit of RNA polymerase in chloroplast genomes and NADH dehydrogenase in mitochondrial genomes. This is the first and original report on whole genomes sequence analysis of organellar genomes of green algae.  相似文献   

15.
The sinipercids are a group of 12 species of freshwater percoid fish endemic to East Asia and their phylogenetic placements have perplexed generations of taxonomists. We cloned and sequenced the complete mitochondrial DNA (mtDNA) of three sinipercid fishes (Siniperca chuatsi, S. kneri, and S. scherzeri) to characterize and compare their mitochondrial genomes. The mitochondrial genomes of S. chuatsi, S. kneri, and S. scherzeri were 16,496, 17,002, and 16,585?bp in length, respectively. The organization of the three mitochondrial genomes is similar to those reported from other fish mitochondrial genomes, which contains 37 genes (13 protein-coding genes, 2 ribosomal RNAs, and 22 transfer RNAs) and a major non-coding control region. Among the 13 protein-coding genes of all the three sinipercid fishes, three reading-frame overlaps were found on the same strand. There is an 81-bp tandem repeat cluster at the end of CSB-3 in the S. scherzeri control region. The complete mitochondrial genomes of the three sinipercids should be useful for the evolutionary studies of sinipercids and other vertebrate species.  相似文献   

16.
17.

Background  

Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes.  相似文献   

18.
MOTIVATION: Simple sequence repeats (SSRs) are abundant across genomes. However, the significance of SSRs in organellar genomes of rice has not been completely understood. The availability of organellar genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. RESULTS: We have analyzed SSRs in mitochondrial and chloroplast genomes of rice. We identified 2528 SSRs in the mitochondrial genome and average 870 SSRs in the chloroplast genomes. About 8.7% of the mitochondrial and 27.5% of the chloroplast SSRs were observed in the genic region. Dinucleotides were the most abundant repeats in genic and intergenic regions of the mitochondrial genome while mononucleotides were predominant in the chloroplast genomes. The rps and nad gene clusters of mitochondria had the maximum repeats, while the rpo and ndh gene clusters of chloroplast had the maximum repeats. We identified SSRs in both organellar genomes and validated in different cultivars and species.  相似文献   

19.
Microsatellites are abundant across prokaryotic and eukaryotic genomes. However, comparative analysis of microsatellites in the organellar genomes of plants and their utility in understanding phylogeny has not been reported. The purpose of this study was to understand the organization of microsatellites in the coding and non-coding regions of organellar genomes of major cereals viz., rice, wheat, maize and sorghum. About 5.8-14.3% of mitochondrial and 30.5-43.2% of chloroplast microsatellites were observed in the coding regions. About 83.8-86.8% of known mitochondrial genes had at least one microsatellite while this value ranged from 78.6-82.9% among the chloroplast genomes. Dinucleotide repeats were the most abundant in the coding and non-coding regions of the mitochondrial genome while mononucleotides were predominant in chloroplast genomes. Maize harbored more repeats in the mitochondrial genome, which could be due to the larger size of genome. A phylogenetic analysis based on mitochondrial and chloroplast genomic microsatellites revealed that rice and sorghum were closer to each other, while wheat was the farthest and this corroborated with the earlier reported phylogenies based on nuclear genome co-linearity and chloroplast gene-based analysis.  相似文献   

20.
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~ 1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号