首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In neural cells, certain RNAs are targeted to dendrites by a specific RNA trafficking pathway, termed the A2 pathway, mediated by the trans-acting trafficking factor, heterogeneous nuclear ribonucleoprotein (hnRNP) A2, which binds to an 11 nucleotide cis-acting trafficking sequence, termed the hnRNP A2 response element (A2RE). RNAs containing A2RE-like sequences are recognized by hnRNP A2 in the nucleus and exported to the cytoplasm where they assemble into trafficking intermediates, termed granules, which also contain components of the translation machinery and molecular motors (cytoplasmic dynein and conventional kinesin). RNA granules move along microtubules to the cell periphery where they become localized and where the encoded protein is translated. Intracellular trafficking of RNA molecules by the A2 pathway is mediated by a complex system consisting of five different subsystems, approximately 35 different molecules and approximately 45 different molecular interactions. Specificity in the A2 pathway is provided by specific interactions of hnRNP A2 with different molecular partners in different subsystems. Polarity of RNA trafficking is controlled by transitions of trafficking intermediates between different subsystems. Comprehensive understanding of the A2 RNA trafficking pathway will require quantitative analysis of concentrations and diffusion constants for each of the different molecules, on rates and off rates for each of the different interactions, relevant conditional operators controlling specific interactions, and interactions of different subsystems. Once the necessary quantitative data are available, mathematical models for the different RNA trafficking subsystems can be developed using computational platforms such as the 'Virtual Cell'. Here we describe how each of the subsystems in the A2 system functions and how the different subsystems interact to regulate RNA trafficking.  相似文献   

2.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.  相似文献   

3.
Few details are known about how the human immunodeficiency virus type 1 (HIV-1) genomic RNA is trafficked in the cytoplasm. Part of this process is controlled by the activity of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2). The role of hnRNP A2 during the expression of a bona fide provirus in HeLa cells is investigated in this study. Using immunofluorescence and fluorescence in situ hybridization techniques, we show that knockdown of hnRNP A2 expression in HIV-1-expressing cells results in the rapid accumulation of HIV-1 genomic RNA in a distinct, cytoplasmic space that corresponds to the microtubule-organizing center (MTOC). The RNA exits in the nucleus and accumulates at the MTOC region as a result of hnRNP A2 knockdown even during the expression of a provirus harboring mutations in the hnRNP A2-response element (A2RE), the expression of which results in nuclear retention of genomic RNA. We also demonstrate that hnRNP A2 expression is required for downstream trafficking of genomic RNA from the MTOC in the cytoplasm. Genomic RNA localization at the MTOC that was both the result of hnRNP A2 knockdown and the overexpression of Rab7-interacting lysosomal protein had little effect on pr55Gag synthesis but negatively influenced virus production and infectivity. These data indicate that altered HIV-1 genomic RNA localization modulates viral assembly and that the MTOC serves as a central site to which HIV-1 genomic RNA converges following its exit from the nucleus, with the host protein, hnRNP A2, playing a central role in taking it to and from this site in the cell.  相似文献   

4.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis -acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule-associated protein that regulates microtubule dynamics. Co-immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co-injection of anti-TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules.
Acknowledgements:   Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

5.
HnRNP A2 is an RNA trafficking protein that binds to a specific cis‐acting RNA trafficking element (A2RE) in myelin basic protein RNA and other transported RNAs. A2RE/hnRNPA2 determinants mediate several different steps in RNA trafficking including granule assembly, transport to the plus ends of microtubules and translational activation. A yeast two hybrid screen designed to identify proteins that interact with hnRNP A2 selected a clone corresponding to the carboxyl terminal portion of TOG (tumor overexpressed gene), a microtubule‐associated protein that regulates microtubule dynamics. Co‐immunostaining of oligodendrocytes with antibody to hnRNPA2 and TOG revealed extensive colocalization of TOG with hnRNP A2 granules in the dendrites. A small population of hnRNP A2 granules lacked TOG and some regions of TOG staining lacked hnRNP A2. In oligodendrocytes injected with fluorescent A2RE RNA and stained for TOG, granules containing fluorescent RNA colocalized with TOG. Co‐injection of anti‐TOG antibody with fluorescent A2RE RNA decreased colocalization with TOG and increased transport of the injected RNA. These observations suggest that molecular interaction between hnRNP A2 and TOG serves to anchor A2RE mRNAs/hnRNPA2 granules at plus ends of microtubules. Acknowledgements: Supported by NIH NS19943 (EB) and NS15190 (JHC), and NMSS RG2843 (EB).  相似文献   

6.
Cytoplasmic transport and localization of mRNA has been reported for a range of oocytes and somatic cells. The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 response element (A2RE) is a 21-nucleotide segment of the myelin basic protein mRNA that is necessary and sufficient for cytoplasmic transport of this message in oligodendrocytes. The predominant A2RE-binding protein in rat brain has previously been identified as hnRNP A2. Here we report that an 11-nucleotide subsegment of the A2RE (A2RE11) was as effective as the full-length A2RE in binding hnRNP A2 and mediating transport of heterologous RNA in oligodendrocytes. Point mutations of the A2RE11 that eliminated binding to hnRNP A2 also markedly reduced the ability of these oligoribonucleotides to support RNA transport. Oligodendrocytes treated with antisense oligonucleotides directed against the translation start site of hnRNP A2 had reduced levels of this protein and disrupted transport of microinjected myelin basic protein RNA. Several A2RE-like sequences from localized neuronal RNAs also bound hnRNP A2 and promoted RNA transport in oligodendrocytes. These data demonstrate the specificity of A2RE recognition by hnRNP A2, provide direct evidence for the involvement of hnRNP A2 in cytoplasmic RNA transport, and suggest that this protein may interact with a wide variety of localized messages that possess A2RE-like sequences.  相似文献   

7.
8.
hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere   总被引:5,自引:1,他引:4       下载免费PDF全文
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.  相似文献   

9.
RNA trafficking signals in human immunodeficiency virus type 1   总被引:1,自引:0,他引:1       下载免费PDF全文
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.  相似文献   

10.
11.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multitasking protein involved in RNA packaging, alternative splicing of pre-mRNA, telomere maintenance, cytoplasmic RNA trafficking, and translation. It binds short segments of single-stranded nucleic acids, including the A2RE11 RNA element that is necessary and sufficient for cytoplasmic transport of a subset of mRNAs in oligodendrocytes and neurons. We have explored the structures of hnRNP A2, its RNA recognition motifs (RRMs) and Gly-rich module, and the RRM complexes with A2RE11. Circular dichroism spectroscopy showed that the secondary structure of the first 189 residues of hnRNP A2 parallels that of the tandem betaalpha betabeta alphabeta RRMs of its paralogue, hnRNP A1, previously deduced from X-ray diffraction studies. The unusual GRD was shown to have substantial beta-sheet and beta-turn structure. Sedimentation equilibrium and circular dichroism results were consistent with the tandem RRM region being monomeric and supported earlier evidence for the binding of two A2RE11 oligoribonucleotides to this domain, in contrast to the protein dimer formed by the complex of hnRNP A1 with the telomeric ssDNA repeat. A three-dimensional structure for the N-terminal, two-RRM-containing segment of hnRNP A2 was derived by homology modeling. This structure was used to derive a model for the complex with A2RE11 using the previously described interaction of pairs of stacked nucleotides with aromatic residues on the RRM beta-sheet platforms, conserved in other RRM-RNA complexes, together with biochemical data and molecular dynamics-based observations of inter-RRM mobility.  相似文献   

12.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binds a 21-nucleotide myelin basic protein mRNA response element, the A2RE, and A2RE-like sequences in other localized mRNAs, and is a trans-acting factor in oligodendrocyte cytoplasmic RNA trafficking. Recombinant human hnRNPs A1 and A2 were used in a biosensor to explore interactions with A2RE and the cognate oligodeoxyribonucleotide. Both proteins have a single site that bound oligonucleotides with markedly different sequences but did not bind in the presence of heparin. Both also possess a second, specific site that bound only A2RE and was unaffected by heparin. hnRNP A2 bound A2RE in the latter site with a K(d) near 50 nm, whereas the K(d) for hnRNP A1 was above 10 microm. UV cross-linking assays led to a similar conclusion. Mutant A2RE sequences, that in earlier qualitative studies appeared not to bind hnRNP A2 or support RNA trafficking in oligodendrocytes, had dissociation constants above 5 microm for this protein. The two concatenated RNA recognition motifs (RRMs), but not the individual RRMs, mimicked the binding behavior of hnRNP A2. These data highlight the specificity of the interaction of A2RE with these hnRNPs and suggest that the sequence-specific A2RE-binding site on hnRNP A2 is formed by both RRMs acting in cis.  相似文献   

13.
Heterogeneous ribonucleoprotein (hnRNP) A2 is a trans-acting factor that mediates intracellular trafficking of specific RNAs containing the A2 response element. HnRNP A2 is localized in the nucleus and also in granules in the perikaryon and processes in oligodendrocytes. The distribution of the cytoplasmic pool of hnRNP A2 is microtubule-dependent. HnRNP A2 is composed of two sequential RNA binding domains (RBDI and RBDII), a glycine-rich domain, and a nuclear import domain (M9). In order to analyze the roles of individual domains in determining the intracellular distribution of hnRNP A2, chimeric mRNAs encoding various domains fused with green fluorescent protein (GFP) were injected into oligodendrocytes, and the subcellular distribution of the GFP hybrid proteins was analyzed by fluorescence microscopy. Chimeric GFP proteins containing the M9 domain were localized to the nucleus. In the absence of the M9 domain, proteins containing the RBDII domain were preferentially concentrated in the distal processes of the cells. Localization of RBDII-containing proteins in the periphery was dependent on the presence of intact microtubules. These data suggest that the RBDII domain of hnRNP A2 targets hnRNP A2 to the periphery of the cell in a microtubule-dependent manner.  相似文献   

14.
15.
16.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a nucleocytoplasmic shuttling protein that regulates gene expression through its action on mRNA metabolism and translation. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here, we show that hnRNP A1 is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5' untranslated region of both the human rhinovirus-2 and the human apoptotic peptidase activating factor 1 (apaf-1) mRNAs, thereby regulating their translation. Furthermore, the cytoplasmic redistribution of hnRNP A1 after rhinovirus infection leads to enhanced rhinovirus IRES-mediated translation, whereas the cytoplasmic relocalization of hnRNP A1 after UVC irradiation limits the UVC-triggered translational activation of the apaf-1 IRES. Therefore, this study provides a direct demonstration that IRESs behave as translational enhancer elements regulated by specific trans-acting mRNA binding proteins in given physiological conditions. Our data highlight a new way to regulate protein synthesis in eukaryotes through the subcellular relocalization of a nuclear mRNA-binding protein.  相似文献   

17.
Splicing of the chicken beta-tropomyosin exon 6A is stimulated, both in vivo and in vitro, by an intronic pyrimidine-rich element (S4) located 37 nucleotides downstream of exon 6A. Several pyrimidine-rich sequences are able to substitute for the natural S4 enhancer with various stimulatory effects. We show that the different enhancer sequences recruit U1 small nuclear ribonucleoprotein (SnRNP) to the exon 6A 5' splice site, with an efficiency that correlates with the splicing activation. By using RNA affinity and two-dimensional gel electrophoresis, we characterized several proteins that bind to the different enhancer sequences. Heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP I (polypyrimidine track-binding protein, PTB) exhibit a higher level of interaction with the strong enhancer sequences (S4) than with the weakest enhancers. Functional analysis shows that hnRNP K is a component of the enhancer complex that promotes exon 6A splicing through the wild-type S4 sequence. The addition of recombinant hnRNP K to nuclear extracts preincubated with poly(rC) RNA competitor completely restores splicing efficiency to the original level. hnRNP I (PTB) was also found associated with the strong enhancer sequences. Its function in the splicing of exon 6A is discussed.  相似文献   

18.
19.
Alternative initiation of translation of the human fibroblast growth factor 2 (FGF-2) mRNA at five in-frame CUG or AUG translation initiation codons requires various RNA cis-acting elements, including an internal ribosome entry site (IRES). Here we describe the purification of a trans-acting factor controlling FGF-2 mRNA translation achieved by several biochemical purification approaches. We have identified the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a factor that binds to the FGF-2 5'-leader RNA and that also complements defective FGF-2 translation in vitro in rabbit reticulocyte lysate. Recombinant hnRNP A1 stimulates in vitro translation at the four IRES-dependent initiation codons but has no effect on the cap-dependent initiation codon. Consistent with a role of hnRNP A1 in the control of alternative initiation of translation, short interfering RNA-mediated knock down of hnRNP A1 specifically inhibits translation at the four IRES-dependent initiation codons. Furthermore, hnRNP A1 binds to the FGF-2 IRES, implicating this interaction in the control of alternative initiation of translation.  相似文献   

20.
In neural cells, such as oligodendrocytes and neurons, transport of certain RNAs along microtubules is mediated by the cis-acting heterogeneous nuclear ribonucleoprotein A2 response element (A2RE) trafficking element and the cognate trans-acting heterogeneous nuclear ribonucleoprotein (hnRNP) A2 trafficking factor. Using a yeast two-hybrid screen, we have identified a microtubule-associated protein, tumor overexpressed gene (TOG)2, as an hnRNP A2 binding partner. The C-terminal third of TOG2 is sufficient for hnRNP A2 binding. TOG2, the large protein isoform of TOG, is the only isoform detected in oligodendrocytes in culture. TOG coimmunoprecipitates with hnRNP A2 present in the cytoskeleton (CSK) fraction of neural cells, and both coprecipitate with microtubule stabilized pellets. Staining with anti-TOG reveals puncta that are localized in proximity to microtubules, often at the plus ends. TOG is colocalized with hnRNP A2 and A2RE-mRNA in trafficking granules that remain associated with CSK-insoluble tissue. These data suggest that TOG mediates the association of hnRNP A2-positive granules with microtubules during transport and/or localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号